1 |
李彦, 骆仲泱, 余春江, 等. 复合掺杂钙钛矿氧化物La0.6Sr0.4-xCaxCo1-yNiyO3-δ阴极的制备和电性能[J]. 化工学报, 2007, 58(5): 1301-1306.
|
|
Li Y, Luo Z Y, Yu C J, et al. Preparation and electric properties of La0.6Sr0.4-xCaxCo1-yNiyO3-δ composite doped perovskite oxide cathode[J]. Journal of Chemical Industry and Engineering(China), 2007, 58(5): 1301-1306.
|
2 |
Qiu Y F, Li H Z, Liu Y H, et al. Effects of niobium doping on the stability of SrCo0.2Fe0.8O3-δ cathodes for intermediate temperature solid oxide fuel cells[J]. Journal of Alloys and Compounds, 2020, 829: 154503.
|
3 |
孙红燕, 森维, 易中周, 等. 中温固体氧化物燃料电池材料的研究进展[J]. 硅酸盐通报, 2012, 31(5): 1194-1199.
|
|
Sun H Y, Sen W, Yi Z Z, et al. Research progress of intermediate temperature solid oxide fuel cell materials[J]. Bulletin of the Chinese Ceramic Society, 2012, 31(5): 1194-1199.
|
4 |
Luo Y, Laura L, Daiguebonne C, et al. A highly efficient and stable oxygen reduction reaction on Pt/CeOx/C electrocatalyst obtained via a sacrificial precursor based on a metal-organic framework[J]. Applied Catalysis B: Environmental, 2016, 189: 39-50.
|
5 |
Sunarso J, Baumann S, Serra J M, et al. Mixed ionic–electronic conducting (MIEC) ceramic-based membranes for oxygen separation[J]. Journal of Membrane Science, 2008, 320(1/2): 13-41.
|
6 |
朴金花, 孙克宁, 廖世军. 钙钛矿型SOFC阴极材料的研究进展[J]. 电源技术, 2009, 33(8): 725-729.
|
|
Piao J H, Sun K N, Liao S J. Progress on the perovskite-type cathode materials of solid oxide fuel cell[J]. Power Source Technology, 2009, 33(8): 725-729.
|
7 |
Hagiwara A, Hobara N, Takizawa K, et al. Preparation and evaluation of mechanochemically fabricated LSM/ScSZ composite materials for SOFC cathodes[J]. Solid State Ionics, 2006, 177(33/34): 2967-2977.
|
8 |
Zhao L, He B B, Lin B, et al. High performance of proton-conducting solid oxide fuel cell with a layered PrBaCo2O5+δ cathode[J]. Journal of Power Sources, 2009, 194(2): 835-837.
|
9 |
McIntosh S, Vente J F, Haije W G, et al. Oxygen stoichiometry and chemical expansion of Ba0.5Sr0.5Co0.8Fe0.2O3-δ measured by in situ neutron diffraction[J]. Chemistry of Materials, 2006,18(8): 2187-2193.
|
10 |
Zhao E, Jia Z, Zhao L, et al. One dimensional La0.8Sr0.2Co0.2Fe0.8O3-δ/Ce0.8Gd0.2O1.9 nanocomposite cathodes for intermediate temperature solid oxide fuel cells[J]. Journal of Power Sources, 2012, 219: 133-139.
|
11 |
Javed M S, Shaheen N, Idrees A, et al. Electrochemical investigations of cobalt-free perovskite cathode material for intermediate temperature solid oxide fuel cell[J]. International Journal of Hydrogen Energy, 2017, 42(15): 10416-10422.
|
12 |
Liang Y Y, Wang H L, Zhou J G, et al. Covalent hybrid of spinel manganese-cobalt oxide and graphene as advanced oxygen reduction electrocatalysts[J]. Journal of the American Chemical Society, 2012, 134(7): 3517-3523.
|
13 |
张荣斌, 李莉, 蔡建信, 等. 尖晶石表面结构与催化性能的研究进展[J]. 江西师范大学学报(自然科学版), 2019, 43(6): 565-575.
|
|
Zhang R B, Li L, Cai J X, et al. Research progress on surface structure and catalytic properties of spinel[J]. Journal of Jiangxi Normal University (Natural Science), 2019, 43(6): 565-575.
|
14 |
Zhao P F, Liang C Y, Gong X W, et al. Microwave absorption enhancement, magnetic coupling and ab initio electronic structure of monodispersed (Mn1-xCox)3O4 nanoparticles[J]. Nanoscale, 2013, 5(17): 8022-8028.
|
15 |
Liu H Y, Zhu X F, Cheng M J, et al. Novel Mn1.5Co1.5O4 spinel cathodes for intermediate temperature solid oxide fuel cells[J]. Chemical Communications, 2011, 47(8): 2378-2380.
|
16 |
Liu X J, Han D, Wu H, et al. Mn1.5Co1.5O4-δ infiltrated yttria stabilized zirconia composite cathodes for intermediate-temperature solid oxide fuel cells[J]. International Journal of Hydrogen Energy, 2013, 38: 16563-16568.
|
17 |
Peng S J, Li L L, Xu Y X, et al. Fabrication of spinel one-dimensional architectures by single-spinneret electrospinning for energy storage applications[J]. ACS Nano, 2015, 9(2): 1945-1954.
|
18 |
Larbi T, Doll K, Amlouk M. Temperature dependence of Raman spectra and first principles study of NiMn2O4 magnetic spinel oxide thin films. Application in efficient photocatalytic removal of RhB and MB dyes[J]. Spectrochimica Acta Part A-Molecular and Biomolecular Spectroscopy, 2019, 216: 117-124.
|
19 |
Dai N N, Feng J, Wang Z H, et al. Synthesis and characterization of B-site Ni-doped perovskites Sr2Fe1.5-xNixMo0.5O6-δ (x=0, 0.05, 0.1, 0.2, 0.4) as cathodes for SOFCs[J]. Journal of Materials Chemistry A, 2013, 1(45): 14147-14153.
|
20 |
Yu X D, Sui C, Ren R Z, et al. Construction of heterointerfaces with enhanced oxygen reduction kinetics for intermediate-temperature solid oxide fuel cells[J]. ACS Applied Energy Materials, 2020, 3(1): 447-455.
|
21 |
Zhou X L, Sun K N, Gao J, et al. Microstructure and electrochemical characterization of solid oxide fuel cells fabricated by co-tape casting[J]. Journal of Power Source, 2009, 191: 528-533.
|
22 |
吴炳辉, 周立娟, 刘晓燕, 等. 复相导电陶瓷的导电机理分析[J]. 人工晶体学报, 2015, 44(12): 3537-3542.
|
|
Wu B H, Zhou L J, Liu X Y, et al. Analysis on electrical conduction mechanism of the composite conductive ceramics[J]. Journal of Synthetic Crystals, 2015, 44(12):3537-3542.
|
23 |
Hassan M S, Yang O B. Enhanced performance of nanocrystalline Cu-doped Pr0.6 Sr0.4FeO3 as cathode for solid oxide fuel cell[J]. Solid State Communications, 2013,156: 59-63.
|
24 |
Long J, Gu J X, Yang Z H, et al. Highly porous, low band-gap NixMn3-xO4 (0.55≤x≤1.2) spinel nanoparticles with in-situ coated carbon as advanced cathode materials for zinc-ion batteries[J]. Journal of Materials Chemistry, 2019, 7(30): 17854-17866.
|
25 |
Marco J, Gancedo J, Nguyencong H, et al. Characterization of Cu1.4Mn1.6O4/PPy composite electrodes[J]. Solid State Ionics, 2006, 177: 1381-1388.
|
26 |
Bradley K, Giagloglou K, Hayden B E, et al. Reversible perovskite electrocatalysts for oxygen reduction/oxygen evolution[J]. Chemical Science, 2019, 10(17): 4609-4617.
|
27 |
Xu C M, Sun K N, Yang X X, et al. Highly active and CO2-tolerant Sr2Fe1.3Ga0.2Mo0.5O6-δ cathode for intermediate-temperature solid oxide fuel cells[J]. Journal of Power Sources, 2020, 450: 227722.
|
28 |
Yang X X, Sun K N, Ma M J, et al. Achieving strong chemical adsorption ability for efficient carbon dioxide electrolysis[J]. Applied Catalysis B: Environmental, 2020, 272: 118968.
|
29 |
Gopal C G, Haile S M. An electrical conductivity relaxation study of oxygen transport in samarium doped ceria[J]. Journal of Materials Chemistry A, 2014, 2: 2405-2417.
|
30 |
Chen Y, Bu Y F, Zhang Y X, et al. A highly efficient and robust nanofiber cathode for solid oxide fuel cells[J]. Advanced Energy Materials, 2017, 7(6): 1601890.
|
31 |
Gao Z, Liu X M, Bergman B, et al. Investigation of oxygen reduction reaction kinetics on Sm0.5Sr0.5CoO3 cathode supported on Ce0.85Sm0.075Nd0.075O2-δ electrolyte[J]. Journal of Power Sources, 2011, 196: 9195-9203.
|
32 |
Zhou W, Ran R, Shao Z P, et al. Electrochemical performance of silver-modified Ba0.5Sr0.5Co0.8Fe0.2O3-δ cathodes prepared via electroless deposition[J]. Electrochimical Acta, 2008, 53: 4370-4380.
|
33 |
Liu Q, Dong X H, Xiao G L, et al. A novel electrode material for symmetrical SOFCs[J]. Advanced Materials, 2010, 22: 5478-5482.
|
34 |
Lin M X, Sakthinathan S, Chiu T W, et al. Preparation of IT-SOFC with Pr2NiO4 cathode and hybrid Ce0.8Sm0.2O1.9 electrolyte[J]. Journal of the Ceramic Society of Japan, 2019, 127(4): 249-253.
|
35 |
Fan L Q, Wang Y W, Jia Z, et al. Nanofiber-structured SSC-GDC composite cathodes for a LSGM electrolyte based IT-SOFCs[J]. Ceramics International, 2015, 41: 6583-6588.
|
36 |
Lu S Q, Yu B, Meng X W, et al. Characterization of SrCo0.7Fe0.2Nb0.1O3-δ cathode materials for intermediate-temperature solid oxide fuel cells[J]. Journal of Power Source, 2014, 273: 244-254.
|