化工学报 ›› 2021, Vol. 72 ›› Issue (5): 2754-2762.DOI: 10.11949/0438-1157.20201224
收稿日期:
2020-08-30
修回日期:
2020-10-17
出版日期:
2021-05-05
发布日期:
2021-05-05
通讯作者:
王海清
作者简介:
刘荫(1996—),女,硕士研究生,基金资助:
LIU Yin1(),WANG Haiqing1(
),XU Xiaolin2,LIU Meichen1
Received:
2020-08-30
Revised:
2020-10-17
Online:
2021-05-05
Published:
2021-05-05
Contact:
WANG Haiqing
摘要:
现行国际标准对安全联锁回路的SIL定级只针对单一场景而无法考虑多个关联场景之间的风险耦合影响。而设计大型联合装置多个超压保护SIF回路的风险分配与降低方案时,需要考虑同一初始事件导致多个装置同时泄放情形下的火炬负荷超载风险。基于上述现状,使用多泄放源同时泄放叠加方法对传统保护层LOPA定级方法进行改进,提出一种定量负荷计算方法来确定多个相互影响的超压联锁保护回路的安全完整性等级(SIL):依据关联泄放时火炬风险量化数据及允许风险等级,逆向实现上游超压联锁的SIL等级校核。案例表明,通过计算停电时火炬系统超压事故的频率,实现对风险耦合的多个超压联锁保护SIF回路SIL等级的重新核算,从而完成对传统LOPA定级结果的修正。
中图分类号:
刘荫, 王海清, 许小林, 刘美晨. 考虑火炬负荷风险的关联联锁回路SIL定级方法[J]. 化工学报, 2021, 72(5): 2754-2762.
LIU Yin, WANG Haiqing, XU Xiaolin, LIU Meichen. SIL grading method of associated overpressure interlock protection circuit considering flare load risk[J]. CIESC Journal, 2021, 72(5): 2754-2762.
SIL等级 | 所需风险降低因子(RRF) | 需求时目标平均失效概率 |
---|---|---|
1 | ||
2 | ||
3 | ||
4 |
表1 风险降低因子与SIL等级对应关系
Table 1 Risk reduction factor and SIL level correspondence table
SIL等级 | 所需风险降低因子(RRF) | 需求时目标平均失效概率 |
---|---|---|
1 | ||
2 | ||
3 | ||
4 |
安全阀编号 | 最大允许压力/bar | 允许背压/bar | 阀口面积/mm | 安全阀类型 | 停电工况最大泄放量/(kg/h) |
---|---|---|---|---|---|
1 | 7.616 | 3.808 | 70.968 | 平衡波纹管式 | 27000 |
2 | 7.616 | 3.808 | 70.968 | 平衡波纹管式 | 25600 |
3 | 8.0 | 4 | 61.935 | 平衡波纹管式 | 23000 |
4 | 8.0 | 4 | 126.452 | 平衡波纹管式 | 40770 |
5 | 8.0 | 4 | 61.935 | 平衡波纹管式 | 19680 |
表2 安全阀参数
Table 2 Safety valve parameter
安全阀编号 | 最大允许压力/bar | 允许背压/bar | 阀口面积/mm | 安全阀类型 | 停电工况最大泄放量/(kg/h) |
---|---|---|---|---|---|
1 | 7.616 | 3.808 | 70.968 | 平衡波纹管式 | 27000 |
2 | 7.616 | 3.808 | 70.968 | 平衡波纹管式 | 25600 |
3 | 8.0 | 4 | 61.935 | 平衡波纹管式 | 23000 |
4 | 8.0 | 4 | 126.452 | 平衡波纹管式 | 40770 |
5 | 8.0 | 4 | 61.935 | 平衡波纹管式 | 19680 |
SIF回路编号 | 风险降低因子(RRF) | SIL等级 |
---|---|---|
回路C | 22 | SIL1 |
回路D | 28 | SIL1 |
回路E | 24 | SIL1 |
表3 LOPA方法确定的设备超压SIF回路SIL等级
Table 3 SIL level of equipment overpressure SIF circuit determined by LOPA method
SIF回路编号 | 风险降低因子(RRF) | SIL等级 |
---|---|---|
回路C | 22 | SIL1 |
回路D | 28 | SIL1 |
回路E | 24 | SIL1 |
设备编号 | 安全阀失效概率 | SIF回路编号 | SIF回路失效概率 | 设备泄放概率 |
---|---|---|---|---|
精馏塔C | 0.085 | SIF回路C | 0.034 | |
精馏塔D | 0.112 | SIF回路D | 0.026 | |
精馏塔E | 0.096 | SIF回路E | 0.0078 |
表4 精馏塔C、D、E泄放概率
Table 4 Release probability of rectification tower C, D, E
设备编号 | 安全阀失效概率 | SIF回路编号 | SIF回路失效概率 | 设备泄放概率 |
---|---|---|---|---|
精馏塔C | 0.085 | SIF回路C | 0.034 | |
精馏塔D | 0.112 | SIF回路D | 0.026 | |
精馏塔E | 0.096 | SIF回路E | 0.0078 |
泄放组合 | 泄放路径编号 | 泄放路径 |
---|---|---|
ABC | M1 | 100%A+100%B+100%C |
ABD | M2 | 100%A+100%B+100%D |
ABE | M3 | 100%A+100%B+100%E |
ABCD | M4 | 100%A+100%B+100%C+50%D |
M5 | 100%A+100%B+100%D+50%C | |
ABCE | M6 | 100%A+100%B+100%C+50%E |
M7 | 100%A+100%B+100%E+50%C | |
ABDE | M8 | 100%A+100%B+100%D+50%E |
M9 | 100%A+100%B+100%E+50%D | |
ABCDE | M10 | 100%A+100%B+100%C+50%D+50%E |
M11 | 100%A+100%B+100%D+50%C+50%E | |
M12 | 100%A+100%B+100%E+50%C+50%D |
表5 泄放组合及泄放路径
Table 5 Discharge combination and discharge path
泄放组合 | 泄放路径编号 | 泄放路径 |
---|---|---|
ABC | M1 | 100%A+100%B+100%C |
ABD | M2 | 100%A+100%B+100%D |
ABE | M3 | 100%A+100%B+100%E |
ABCD | M4 | 100%A+100%B+100%C+50%D |
M5 | 100%A+100%B+100%D+50%C | |
ABCE | M6 | 100%A+100%B+100%C+50%E |
M7 | 100%A+100%B+100%E+50%C | |
ABDE | M8 | 100%A+100%B+100%D+50%E |
M9 | 100%A+100%B+100%E+50%D | |
ABCDE | M10 | 100%A+100%B+100%C+50%D+50%E |
M11 | 100%A+100%B+100%D+50%C+50%E | |
M12 | 100%A+100%B+100%E+50%C+50%D |
泄放路径编号 | 设备A泄放量/ (kg/h) | 设备B泄放量/ (kg/h) | 装置C泄放量/ (kg/h) | 装置D泄放量/ (kg/h) | 装置E泄放量/ (kg/h) | 泄放路径出现 概率 |
---|---|---|---|---|---|---|
M1 | 27000 | 25600 | 23000 | 0 | 0 | |
M2 | 27000 | 25600 | 0 | 40770 | 0 | |
M3 | 27000 | 25600 | 0 | 0 | 19680 | |
M4 | 27000 | 25600 | 23000 | 20385 | 0 | 4.20 |
M5 | 27000 | 25600 | 11500 | 40770 | 0 | 4.20 |
M6 | 27000 | 25600 | 23000 | 0 | 9840 | |
M7 | 27000 | 25600 | 11500 | 0 | 19680 | |
M8 | 27000 | 25600 | 0 | 40770 | 9840 | 1.09 |
M9 | 27000 | 25600 | 0 | 20385 | 19680 | 1.09 |
M10 | 27000 | 25600 | 23000 | 20385 | 9840 | 2.10 |
M11 | 27000 | 25600 | 11500 | 40770 | 9840 | 2.10 |
M12 | 27000 | 25600 | 11500 | 20385 | 19680 | 2.10 |
表6 各泄放路径下装置泄放量及泄放路径出现概率
Table 6 The discharge volume of the device and occurrence probability under each discharge path
泄放路径编号 | 设备A泄放量/ (kg/h) | 设备B泄放量/ (kg/h) | 装置C泄放量/ (kg/h) | 装置D泄放量/ (kg/h) | 装置E泄放量/ (kg/h) | 泄放路径出现 概率 |
---|---|---|---|---|---|---|
M1 | 27000 | 25600 | 23000 | 0 | 0 | |
M2 | 27000 | 25600 | 0 | 40770 | 0 | |
M3 | 27000 | 25600 | 0 | 0 | 19680 | |
M4 | 27000 | 25600 | 23000 | 20385 | 0 | 4.20 |
M5 | 27000 | 25600 | 11500 | 40770 | 0 | 4.20 |
M6 | 27000 | 25600 | 23000 | 0 | 9840 | |
M7 | 27000 | 25600 | 11500 | 0 | 19680 | |
M8 | 27000 | 25600 | 0 | 40770 | 9840 | 1.09 |
M9 | 27000 | 25600 | 0 | 20385 | 19680 | 1.09 |
M10 | 27000 | 25600 | 23000 | 20385 | 9840 | 2.10 |
M11 | 27000 | 25600 | 11500 | 40770 | 9840 | 2.10 |
M12 | 27000 | 25600 | 11500 | 20385 | 19680 | 2.10 |
泄放路径编号 | 安全阀1/bar | 安全阀2/bar | 安全阀3/bar | 安全阀4/bar | 安全阀5/bar |
---|---|---|---|---|---|
M1 | 4.02 | 4.02 | 3.20 | 1.58 | 1.58 |
M2 | 3.60 | 3.60 | 2.49 | 2.86 | 2.17 |
M3 | 3.45 | 3.45 | 2.26 | 1.68 | 1.90 |
M4 | 4.095 | 4.096 | 3.298 | 2.184 | 1.979 |
M5 | 3.893 | 3.894 | 2.932 | 2.982 | 2.331 |
M6 | 4.044 | 4.045 | 3.233 | 1.749 | 1.805 |
M7 | 3.738 | 3.738 | 2.714 | 1.829 | 2.030 |
M8 | 3.688 | 3.688 | 2.628 | 3.101 | 2.506 |
M9 | 3.592 | 3.592 | 2.485 | 2.411 | 2.391 |
M10 | 4.161 | 4.162 | 3.381 | 2.435 | 2.293 |
M11 | 3.986 | 3.987 | 3.058 | 3.227 | 2.664 |
M12 | 3.887 | 3.888 | 2.924 | 2.554 | 2.536 |
表7 出现超压的泄放路径参数
Table 7 Overpressure relief path parameters
泄放路径编号 | 安全阀1/bar | 安全阀2/bar | 安全阀3/bar | 安全阀4/bar | 安全阀5/bar |
---|---|---|---|---|---|
M1 | 4.02 | 4.02 | 3.20 | 1.58 | 1.58 |
M2 | 3.60 | 3.60 | 2.49 | 2.86 | 2.17 |
M3 | 3.45 | 3.45 | 2.26 | 1.68 | 1.90 |
M4 | 4.095 | 4.096 | 3.298 | 2.184 | 1.979 |
M5 | 3.893 | 3.894 | 2.932 | 2.982 | 2.331 |
M6 | 4.044 | 4.045 | 3.233 | 1.749 | 1.805 |
M7 | 3.738 | 3.738 | 2.714 | 1.829 | 2.030 |
M8 | 3.688 | 3.688 | 2.628 | 3.101 | 2.506 |
M9 | 3.592 | 3.592 | 2.485 | 2.411 | 2.391 |
M10 | 4.161 | 4.162 | 3.381 | 2.435 | 2.293 |
M11 | 3.986 | 3.987 | 3.058 | 3.227 | 2.664 |
M12 | 3.887 | 3.888 | 2.924 | 2.554 | 2.536 |
泄放路径编号 | 泄放路径 | 泄放路径出现概率Pdi |
---|---|---|
M1 | 100%A+100%B+100%C | |
M4 | 100%A+100%B+100%C+50%D | 1.238 |
M5 | 100%A+100%B+100%D+50%C | 1.238 |
M6 | 100%A+100%B+100%C+50%E | 3.182 |
M10 | 100%A+100%B+100%C+50%D+50%E | 6.178 |
M11 | 100%A+100%B+100%D+50%C+50%E | 6.178 |
M12 | 100%A+100%B+100%E+50%C+50%D | 6.178 |
表8 精馏塔C无SIS系统保护时超压泄放路径及其出现概率
Table 8 Overpressure relief path and occurrence probability of distillation column C without SIS system protection
泄放路径编号 | 泄放路径 | 泄放路径出现概率Pdi |
---|---|---|
M1 | 100%A+100%B+100%C | |
M4 | 100%A+100%B+100%C+50%D | 1.238 |
M5 | 100%A+100%B+100%D+50%C | 1.238 |
M6 | 100%A+100%B+100%C+50%E | 3.182 |
M10 | 100%A+100%B+100%C+50%D+50%E | 6.178 |
M11 | 100%A+100%B+100%D+50%C+50%E | 6.178 |
M12 | 100%A+100%B+100%E+50%C+50%D | 6.178 |
1 | Functional safety - Safety instrumented systems for the process industry sector (Part 1): Framework, definitions, system, hardware and software requirements: Part 1 (IEC 61511-1 Mod)-2004[S]. American National Standard Institute, 2004. |
2 | Functional safety - Safety instrumented systems for the process industry sector (Part 2): Guidelines for the application – Informative: Part 2 (IEC 61511-2 Mod)-2004[S]. American National Standard Institute, 2004. |
3 | Functional safety - Safety instrumented systems for the process industry sector (Part 3): Guidance for the determination of the required safety integrity levels – informative: Part 3 (IEC 61511-3 Mod)-2004[S]. American National Standard Institute, 2004. |
4 | International Electrotechnical Commission (IEC). Functional safety of electrical/electronic/programmable electronic safety related systems: [S]. Switzerland: IEC, 2010. |
5 | Baybutt P. Overcoming challenges in using layers of protection analysis (LOPA) to determine safety integrity levels (SILs)[J]. Journal of Loss Prevention in the Process Industries, 2017, 48: 32-40. |
6 | Baybutt P. The interface of functional safety with process safety and risk analysis[J]. Process Safety Progress, 2013, 32(4): 346-350. |
7 | Pressure-relieving and depressuring systems: API Standard 521[S]. Amercia Petroleum Institute, 2014. |
8 | 毕明树, 李岳, 周一卉, 等. 化工过程安全泄压装置的概念设计[J]. 石油化工设备, 2003, 32(4): 33-35. |
Bi M S, Li Y, Zhou Y H, et al. Conceptual design of safety venting devices for chemical process[J]. Petro-Chemical Equipment, 2003, 32(4): 33-35. | |
9 | 王海清, 刘荫, 高智泉, 等. 石化装置改扩建对火炬系统负荷影响的量化分析[J]. 化工进展,2020, 39 (9): 3842-3848. |
Wang H Q, Liu Y, Gao Z Q, et al. Quantitative analysis of the influence of petrochemical plant modification and expansion on flare system load[J]. Chemical Industry and Engineering Progress,2020, 39 (9): 3842-3848. | |
10 | Lee I, Oh T. A study of flare load reduction by a safety instrumented system based on a high integrity protection system[J]. Process Safety Progress, 2013, 32(4): 393-400. |
11 | 中华人民共和国工业和信息化部. 石油化工可燃性气体排放系统设计规范: [S]. 北京: 中国石化出版社, 2014. |
Ministry of Industry and Information of the People's Republic of China. Design specification for combustible gas discharge system in petrochemical industry:[S]. Beijing: China Petrochemical Press, 2014. | |
12 | Lopez R A, Saud Y, Vaez N. Assessment of the likelihood of exceeding the flare capacity of multiple LNG processing trains[J]. Process Safety Progress, 2015, 34(3): 250-258. |
13 | 眭文祺, 王海清, 冯军, 等. 火炬系统中的多压力单元泄放叠加算法研究[C]//第六届CCPS中国过程安全会议论文集. 2018: 762-771. |
Sui W Q, Wang H Q, Feng J, et al. Study on multi-pressure units relief superimposed algorithm in flare system[C]//6th CCPS China Conference on Process Safety. 2018: 762-771. | |
14 | 刘海浪, 徐建峰. 浅谈安全阀超压泄放量的计算[J]. 石油和化工设备, 2015, 18(10): 33-35. |
Liu H L, Xu J F. On the over-pressure safety valve calculation of leakage [J]. Petro & Chemical Equipment, 2015, 18(10): 33-35. | |
15 | 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 压力容器: ~150.4—2011[S]. 北京: 中国标准出版社, 2011. |
General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. Pressure vessels: [S]. Beijing: Standards Press of China, 2011. | |
16 | 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 安全阀一般要求: [S]. 北京: 中国标准出版社, 2005. |
General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. Safety valves: General requirements: [S]. Beijing: Standards Press of China, 2005. | |
17 | Safety device for protection against excessive pressure: EN[S]. European Committee for Standardization, 2013. |
18 | 国家安全生产监督管理总局. 保护层分析: A[S]. 北京: 煤炭工业出版社, 2015. |
State Administration of Quality and Technical Supervision of the People's Republic of China. Guidelines for layer of protection analysis(LOPA): A [S]. Beijing: China Coal Industry Publishing House, 2015. | |
19 | OREDA, Offshore Reliability Data Handbook[M]. Trondheim, Norway: SINTEF Technology and Society, 2002. |
20 | Design of reliable industrial and commercial power systems: IEEE 493—2007[S]. New York, USA: Institute of Electrical and Electronics Engineers, 2007. |
21 | Spouge J, Technica D N V. A Guide to Quantitative Risk Assessment for Offshore Installations[M]. Aberdeen, UK: Centre for Marine and Petroleum Technology (CMPT), 1999. |
22 | International Association of Oil & Gas Producers. Process release frequencies: Report No. 434-1[R]. OGP, 2010. |
23 | 中国石油化工集团公司. 风险矩阵标准: Q/SH 0560-2013[S]. 2013. |
Group Sinopec. Standard for risk matrix: Q/SH 0560-2013[S]. 2013. | |
24 | 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 过程工业领域安全仪表系统的功能安全 第1部分:框架、定义、系统、硬件和软件要求: [S]. 北京: 中国标准出版社, 2007. |
General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. Functional safety—Safety instrumented systems for the process industry sector—Part 1: Framework definitions system hardware and software requirements: [S]. Beijing: Standards Press of China, 2007. | |
25 | 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 过程工业领域安全仪表系统的功能安全 第2部分:的应用指南:GB/T 21109.2—2007[S]. 北京: 中国标准出版社, 2007. |
General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. Functional safety—Safety instrumented systems for the process industry sector—Part 2: Guidelines for the application of[S]. Beijing: Standards Press of China, 2007. | |
26 | 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 过程工业领域安全仪表系统的功能安全 第3部分:确定要求的安全完整性等级的指南: [S]. 北京: 机械工业出版社, 2007. |
General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. Functional safety—Safety instrumented systems for the process industry sector—Part 3: Guidance for the determination of the required safety integrity levels: [S]. Beijing: China Machine Press, 2007. | |
27 | Center for Chemical Process Safety/American Institute of Chemical Engineers. Layer of Protection Analysis[M]. New York: CCPS, 2001. |
28 | 白永忠. HAZOP技术在炼油火炬系统工艺危害分析中的应用[J]. 中国安全生产科学技术, 2011, 7(10): 106-111. |
Bai Y Z. Application of HAZOP in the process hazard analysis on a petrochemical flare system[J]. Journal of Safety Science and Technology, 2011, 7(10): 106-111. | |
29 | 樊晶. Flarenet在乙醇合成项目火炬管网设计中的应用[J]. 石油化工设计, 2019, 36(1): 12-15, 5. |
Fan J. Application of flarenet software in flare system design of ethanol synthesis project[J]. Petrochemical Design, 2019, 36(1): 12-15, 5. | |
30 | 姜凯. FLARENET在乙烯装置火炬管网设计中的应用[J]. 石油化工设计, 2013, 30(3): 42-45, 69. |
Jiang K. Application of flarenet in design of flare pipe network for ethylene plant[J]. Petrochemical Design, 2013, 30(3): 42-45, 69. |
[1] | 杨欣, 王文, 徐凯, 马凡华. 高压氢气加注过程中温度特征仿真分析[J]. 化工学报, 2023, 74(S1): 280-286. |
[2] | 陈哲文, 魏俊杰, 张玉明. 超临界水煤气化耦合SOFC发电系统集成及其能量转化机制[J]. 化工学报, 2023, 74(9): 3888-3902. |
[3] | 齐聪, 丁子, 余杰, 汤茂清, 梁林. 基于选择吸收纳米薄膜的太阳能温差发电特性研究[J]. 化工学报, 2023, 74(9): 3921-3930. |
[4] | 何松, 刘乔迈, 谢广烁, 王斯民, 肖娟. 高浓度水煤浆管道气膜减阻两相流模拟及代理辅助优化[J]. 化工学报, 2023, 74(9): 3766-3774. |
[5] | 邢雷, 苗春雨, 蒋明虎, 赵立新, 李新亚. 井下微型气液旋流分离器优化设计与性能分析[J]. 化工学报, 2023, 74(8): 3394-3406. |
[6] | 李珍宝, 李超, 王虎, 王绍瑞, 黎泉. MPP抑制铝镁合金粉尘爆炸微观机理研究[J]. 化工学报, 2023, 74(8): 3608-3614. |
[7] | 陈国泽, 卫东, 郭倩, 向志平. 负载跟踪状态下的铝空气电池堆最优功率点优化方法[J]. 化工学报, 2023, 74(8): 3533-3542. |
[8] | 刘文竹, 云和明, 王宝雪, 胡明哲, 仲崇龙. 基于场协同和![]() |
[9] | 张曼铮, 肖猛, 闫沛伟, 苗政, 徐进良, 纪献兵. 危废焚烧处理耦合有机朗肯循环系统工质筛选与热力学优化[J]. 化工学报, 2023, 74(8): 3502-3512. |
[10] | 诸程瑛, 王振雷. 基于改进深度强化学习的乙烯裂解炉操作优化[J]. 化工学报, 2023, 74(8): 3429-3437. |
[11] | 吴文涛, 褚良永, 张玲洁, 谭伟民, 沈丽明, 暴宁钟. 腰果酚生物基自愈合微胶囊的高效制备工艺研究[J]. 化工学报, 2023, 74(7): 3103-3115. |
[12] | 汤晓玲, 王嘉瑞, 朱玄烨, 郑仁朝. 基于Pickering乳液的卤醇脱卤酶催化合成手性环氧氯丙烷[J]. 化工学报, 2023, 74(7): 2926-2934. |
[13] | 刘晓洋, 喻健良, 侯玉洁, 闫兴清, 张振华, 吕先舒. 螺旋微通道对掺氢甲烷爆轰传播的影响[J]. 化工学报, 2023, 74(7): 3139-3148. |
[14] | 文兆伦, 李沛睿, 张忠林, 杜晓, 侯起旺, 刘叶刚, 郝晓刚, 官国清. 基于自热再生的隔壁塔深冷空分工艺设计及优化[J]. 化工学报, 2023, 74(7): 2988-2998. |
[15] | 江锦波, 彭新, 许文烜, 门日秀, 刘畅, 彭旭东. 泵出型螺旋槽油气密封泄漏特性及参数影响研究[J]. 化工学报, 2023, 74(6): 2538-2554. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 260
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 587
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||