化工学报 ›› 2021, Vol. 72 ›› Issue (S1): 554-559.doi: 10.11949/0438-1157.20201576

• 材料化学工程与纳米技术 • 上一篇    下一篇

基于活性碳纤维毡复合吸附剂的储热性能

罗伟莉(),王雯雯,潘权稳(),葛天舒,王如竹   

  1. 上海交通大学机械与动力工程学院,上海 200240
  • 收稿日期:2020-11-03 修回日期:2021-02-01 出版日期:2021-06-20 发布日期:2021-06-20
  • 通讯作者: 潘权稳 E-mail:luoweili@sjtu.edu.cn;sailote@sjtu.edu.cn
  • 作者简介:罗伟莉(1983—),女,硕士,助理工程师,luoweili@sjtu.edu.cn
  • 基金资助:
    上海市青年科技英才扬帆计划项目(19YF1423100);空调设备及系统运行节能国家重点实验室开放基金项目(ACSKL2018KT1203);上海交通大学“新进青年教师启动计划”项目

Heat storage performance of composite adsorbent with activated carbon fiber

LUO Weili(),WANG Wenwen,PAN Quanwen(),GE Tianshu,WANG Ruzhu   

  1. School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
  • Received:2020-11-03 Revised:2021-02-01 Published:2021-06-20 Online:2021-06-20
  • Contact: PAN Quanwen E-mail:luoweili@sjtu.edu.cn;sailote@sjtu.edu.cn

摘要:

研制了一种以活性碳纤维毡为基质、氯化锂(LiCl)为吸湿盐的复合吸附剂,并辅以硅溶胶进行固化成型。该复合吸附剂可用于以水为吸附质的热化学吸附储热系统,并对其微观结构、吸附性能和储热性能进行了表征研究。制备了不同含盐量的复合吸附剂样品,并根据样品的溶液泄漏现象,确定ACFLi30为最佳样品。通过试验测量,获得ACFLi30样品的热导率、孔比表面积、孔体积和孔径等参数。并对多种温湿度工况下的平衡和动态吸附性能进行测试,研究了不同温湿度条件下样品的吸附特性。结果表明样品的吸水量可达1.1 g/g(20℃、75% RH)。利用同步热分析仪测试了复合吸附剂的储热密度,ACFLi30的质量和体积储热密度分别达到1.08 kW·h/kg和588.2 kW·h/m3。与膨胀蛭石和活性氧化铝等基质相比,活性碳纤维毡基质在体积储热密度更具优势。

关键词: 活性碳纤维毡, 吸附剂, 氯化锂, 吸附, 解吸, 储热

Abstract:

In order for efficient chemisorption heat storage system, an activated carbon fiber (ACF)-LiCl composite sorbent was developed while silica sol (SS) was used for shaping. Morphologies records, sorption kinetics and heat storage performance of ACF-LiCl composite sorbent were investigated. Samples with different salt contents were fabricated to store low-temperature thermal heat by impregnation methods. According to the test of the solution leakage phenomenon, the best sample was determined to be ACFLi30. Through the experimental study, thermal conductivity, specific surface area, pore volume and pore diameter were obtained. Sorption kinetics and equilibrium sorption capacity under conditions of multi temperature and relative humidity were studied by utilizing constant temperature and humidity chamber. The water uptake of ACFLi30 sample can be up to 1.1 g/g. Energy storage density was measured by simultaneous thermal analyzer. ACFLi30 sample had the good energy storage performance with 1.08 kW·h/kg mass energy storage density and 588.2 kW·h/m3 volumetric energy storage density. Compared with expanded vermiculite and activated alumina matrix, composite sorbent with ACF matrix has advantage in volumetric energy storage density. As a consequence, ACF-LiCl is promising sorbent in the field of chemisorption heat storage.

Key words: activated carbon fiber, sorbent, lithium chloride, adsorption, desorption, heat storage

中图分类号: 

  • TK 02

图1

复合吸附剂的制备过程"

表1

不同复合吸附剂的含盐量"

样品ACF占比/%SS占比/%LiCl占比/%
ACFLi200.0960.6540.250
ACFLi300.0800.5870.333
ACFLi400.0790.5330.388

表2

样品比表面积、孔体积和孔径"

样品比表面积/(m2/g)孔体积/(cm3/g)孔径/nm
ACF[28]1380.640.551.58
ACFLi30124.220.111.79

表3

样品热导率、热扩散系数和比热容"

样品表观密度/(kg/m3)

热导率/

(W/(m?K))

热扩散系数/(mm2/s)

比热容/

(MJ/(m3?K))

ACF80~850.06940.36300.1912
ACFLi30543.30.56490.18063.1280

图2

ACFLi30的平衡吸附曲线"

图3

ACFLi30的动态吸附曲线"

图4

ACFLi30的脱附过程吸水量和热流曲线"

表4

样品储热密度"

样品质量储热密度/(kW·h/kg)体积储热密度/(kW·h/m3)
ACFLi301.08588.2
EVM-LiCl[29]1.21171.6
EVM-LiCl[30]0.72253
AA-LiCl[20]0.29318.3
1 闫霆, 王文欢, 王程遥. 化学储热技术的研究现状及进展[J]. 化工进展, 2018, 37(12): 4586-4595.
Yan T, Wang W H, Wang C Y. Research situation and progress on chemical heat storage technology [J]. Chemical Industry and Engineering Progress, 2018, 37(12): 4586-4595.
2 Palomba V, Frazzica A. Recent advancements in sorption technology for solar thermal energy storage applications [J]. Solar Energy, 2019, 192: 69-105.
3 李琳, 黄宏宇, 邓立生, 等. 低品位能源化学储热材料研究进展[J]. 化工进展, 2020, 39(9): 3608-3616.
Li L, Huang H Y, Deng L S, et al. Research progress of low-grade energy chemical heat storage materials [J]. Chemical Industry and Engineering Progress, 2020, 39(9): 3608-3616.
4 Lim K, Kim J, Lee J. Comparative study on adsorbent characteristics for adsorption thermal energy storage system [J]. International Journal of Energy Research, 2019, 43(9): 4281-4294.
5 Zhang Y N, Wang R Z, Li T X. Sorption Thermal Energy Storage [M]// Wang R Z, Zhai X Q. Handbook of Energy Systems in Green Buildings. Berlin: Springer Berlin Heidelberg, 2018: 1109-1161.
6 Sun B C, Chakraborty A. Thermodynamic formalism of water uptakes on solid porous adsorbents for adsorption cooling applications [J]. Applied Physics Letters, 2014, 104(20): 201901.
7 Sun B C, Chakraborty A. Thermodynamic frameworks of adsorption kinetics modeling: dynamic water uptakes on silica gel for adsorption cooling applications [J]. Energy, 2015, 84: 296-302.
8 van Alebeek R, Scapino L, Beving M A J M, et al. Investigation of a household-scale open sorption energy storage system based on the zeolite 13X/water reacting pair [J]. Applied Thermal Engineering, 2018, 139: 325-333.
9 Wang R Z, Wang Q B. Adsorption mechanism and improvements of the adsorption equation for adsorption refrigeration pairs [J]. International Journal of Energy Research, 1999, 23(10): 887-898.
10 Zheng X, Wang R Z, Ge T S, et al. Performance study of SAPO-34 and FAPO-34 desiccants for desiccant coated heat exchanger systems [J]. Energy, 2015, 93, Part 1: 88-94.
11 Kohler T, Hinze M, Müller K, et al. Temperature independent description of water adsorption on zeotypes showing a type V adsorption isotherm [J]. Energy, 2017, 135: 227-236.
12 Brancato V, Frazzica A. Characterisation and comparative analysis of zeotype water adsorbents for heat transformation applications [J]. Solar Energy Materials and Solar Cells, 2018, 180: 91-102.
13 Teo H W B, Chakraborty A, Kayal S. Post synthetic modification of MIL-101(Cr) for S-shaped isotherms and fast kinetics with water adsorption [J]. Applied Thermal Engineering, 2017, 120: 453-462.
14 Wang S J, Lee J S, Wahiduzzaman M, et al. A robust large-pore zirconium carboxylate metal-organic framework for energy-efficient water-sorption-driven refrigeration [J]. Nature Energy, 2018, 3(11): 985-993.
15 Cui S Q, Qin M H, Marandi A, et al. Metal-organic frameworks as advanced moisture sorbents for energy-efficient high temperature cooling [J]. Scientific Reports, 2018, 8(1): 15284.
16 Li R Y, Shi Y, Wu M C, et al. Photovoltaic panel cooling by atmospheric water sorption-evaporation cycle [J]. Nature Sustainability, 2020, 3(8): 636-643.
17 Yu N, Wang R Z, Wang L W. Sorption thermal storage for solar energy [J]. Progress in Energy and Combustion Science, 2013, 39(5): 489-514.
18 Lehmann C, Kolditz O, Nagel T. Modelling sorption equilibria and kinetics in numerical simulations of dynamic sorption experiments in packed beds of salt/zeolite composites for thermochemical energy storage [J]. International Journal of Heat and Mass Transfer, 2019, 128: 1102-1113.
19 张艳楠, 王如竹, 李廷贤. 蛭石/氯化钙复合吸附剂的吸附特性和储热性能[J]. 化工学报, 2018, 69(1): 363-370.
Zhang Y N, Wang R Z, Li T X. Sorption characteristics and thermal storage performance of expanded vermiculite/CaCl2 composite sorbent [J]. CIESC Journal, 2018, 69(1): 363-370.
20 Zhang Y N, Wang R Z, Li T X. Thermochemical characterizations of high-stable activated alumina/LiCl composites with multistage sorption process for thermal storage [J]. Energy, 2018, 156: 240-249.
21 刘华, 彭佳杰, 余凯, 等. 活性氧化铝基质新型复合吸附剂的制备和储热性能[J]. 化工学报, 2020, 71(7): 3354-3361.
Liu H, Peng J J, Yu K, et al. Preparation and thermal storage performance of novel composite sorbent with activated alumina matrix [J]. CIESC Journal, 2020, 71(07): 3354-3361.
22 赵惠忠, 程俊峰, 唐祥虎, 等. 多壁碳纳米管嵌入13X/MgCl2复合吸附剂的性能试验[J]. 化工学报, 2017, 68(5): 1860-1865
Zhao H Z, Cheng J F, Tang X H, et al. Performance of multi wall carbon nanotubes embedded 13X/MgCl2 composite adsorbent [J]. CIESC Journal, 2017, 68(5): 1860-1865.
23 Brancato V, Gordeeva L G, Grekova A D, et al. Water adsorption equilibrium and dynamics of LiCl/MWCNT/PVA composite for adsorptive heat storage [J]. Solar Energy Materials and Solar Cells, 2019, 193: 133-140.
24 D'ans P, Courbon E, Permyakova A, et al. A new strontium bromide MOF composite with improved performance for solar energy storage application [J]. Journal of Energy Storage, 2019, 25: 100881.
25 Wang J Y, Wang R Z, Wang L W, et al. A high efficient semi-open system for fresh water production from atmosphere [J]. Energy, 2017, 138: 542-551.
26 陈金妹, 张健. ASAP2020比表面积及孔隙分析仪的应用[J]. 分析仪器, 2009, (3): 61-64.
Chen J M, Zhang J. Application of ASAP specific surface area and pore analyzer [J]. Analytical Instrumentation, 2009, (3): 61-64.
27 肖红俊, 于帆, 张欣欣. 瞬态平面热源法测量材料热导率[J]. 北京科技大学学报, 2012, 34(12): 1432-1436.
Xiao H J, Yu F, Zhang X X. Thermal conductivity measurement of materials based on a transient hot-plane method [J]. Journal of University of Science and Technology Beijing, 2012, 34(12): 1432-1436.
28 王佳韵. 基于复合活性炭纤维材料的吸附式空气取水原理与系统[D]. 上海: 上海交通大学, 2018.
Wang J Y. Research on principle and system of atmosphere water harvesting unit based on active carbon fiber composite material [D]. Shanghai: Shanghai Jiao Tong University, 2018.
29 Zhang Y N, Wang R Z, Li T X, et al. Thermochemical characterizations of novel vermiculite-LiCl composite sorbents for low-temperature heat storage [J]. Energies, 2016, 9(10): 854-869.
30 Grekova A D, Gordeeva L G, Aristov Y I. Composite “LiCl/vermiculite” as advanced water sorbent for thermal energy storage [J]. Applied Thermal Engineering, 2017, 124: 1401-1408.
[1] 蔺彩虹, 王丽, 吴瑜, 刘鹏, 杨江峰, 李晋平. 沸石中碱金属阳离子对CO2/N2O吸附分离性能的影响[J]. 化工学报, 2023, 74(5): 2013-2021.
[2] 李辰鑫, 潘艳秋, 何流, 牛亚宾, 俞路. 基于碳微晶结构的炭膜模型及其气体分离模拟[J]. 化工学报, 2023, 74(5): 2057-2066.
[3] 陈韶云, 徐东, 陈龙, 张禹, 张远方, 尤庆亮, 胡成龙, 陈建. 单层聚苯胺微球阵列结构的制备及其吸附性能[J]. 化工学报, 2023, 74(5): 2228-2238.
[4] 王蕾, 王磊, 白云龙, 何柳柳. SA膜状锂离子筛的制备及其锂吸附性能[J]. 化工学报, 2023, 74(5): 2046-2056.
[5] 肖川宝, 李林洋, 刘武锋, 钟年丙, 解泉华, 钟登杰, 常海星. 光催化与离子交换吸附耦合有效去除2,4,6-三氯苯酚[J]. 化工学报, 2023, 74(4): 1587-1597.
[6] 王皓, 唐思扬, 钟山, 梁斌. MEA吸收CO2富液解吸过程中固体颗粒表面的强化作用分析[J]. 化工学报, 2023, 74(4): 1539-1548.
[7] 潘煜, 王子航, 王佳韵, 王如竹, 张华. 基于可得然-氯化锂复合吸附剂的除湿换热器热湿性能研究[J]. 化工学报, 2023, 74(3): 1352-1359.
[8] 吴选军, 王超, 曹子健, 蔡卫权. 数据与物理信息混合驱动的固定床吸附穿透深度学习模型[J]. 化工学报, 2023, 74(3): 1145-1160.
[9] 许万, 陈振斌, 张慧娟, 牛昉昉, 火婷, 刘兴盛. 线性温敏性聚合物嵌段调控的ReO4-智能离子印迹聚合物的设计制备及其吸附分离性能研究[J]. 化工学报, 2023, 74(2): 941-952.
[10] 彭晓婉, 郭笑楠, 邓春, 刘蓓, 孙长宇, 陈光进. ZIF-8浆液法分离CH4/N2的双吸收-吸附塔工艺流程建模与模拟[J]. 化工学报, 2023, 74(2): 784-795.
[11] 姜家豪, 黄笑乐, 任纪云, 朱正荣, 邓磊, 车得福. 生物炭吸附溶液中Pb2+的定性及定量研究[J]. 化工学报, 2023, 74(2): 830-842.
[12] 李敏, 阎雪茹, 刘新磊. 苯并咪唑连接聚合物吸附剂和膜研究进展[J]. 化工学报, 2023, 74(2): 599-616.
[13] 李沐紫, 贾国伟, 赵砚珑, 张鑫, 李建荣. 金属有机框架材料对非二氧化碳温室气体捕捉研究进展[J]. 化工学报, 2023, 74(1): 365-379.
[14] 焦巡, 童成, 李存璞, 魏子栋. 锂硫电池的动力学调控策略[J]. 化工学报, 2023, 74(1): 170-191.
[15] 党迎喜, 谈朋, 刘晓勤, 孙林兵. 辐射冷却和太阳能加热驱动的CO2变温捕获[J]. 化工学报, 2023, 74(1): 469-478.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!