化工学报 ›› 2021, Vol. 72 ›› Issue (8): 3891-3906.doi: 10.11949/0438-1157.20210020

• 综述与专论 • 上一篇    下一篇

高稳定碱性离子膜分子设计研究进展

徐子昂(),万磊,刘凯,王保国()   

  1. 清华大学化学工程系,北京 100084
  • 收稿日期:2021-01-08 修回日期:2021-03-13 出版日期:2021-08-05 发布日期:2021-08-05
  • 通讯作者: 王保国 E-mail:xza19@mails.tsinghua.edu.cn;bgwang@mail.tsinghua.edu.cn
  • 作者简介:徐子昂(1996—),男,博士研究生,xza19@mails.tsinghua.edu.cn
  • 基金资助:
    国家重点研发计划项目(2020YFB1505602);国家自然科学基金项目(21776154)

Recent progress of molecular design for highly stable alkaline anion exchange membranes

Zi'ang XU(),Lei WAN,Kai LIU,Baoguo WANG()   

  1. Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
  • Received:2021-01-08 Revised:2021-03-13 Published:2021-08-05 Online:2021-08-05
  • Contact: Baoguo WANG E-mail:xza19@mails.tsinghua.edu.cn;bgwang@mail.tsinghua.edu.cn

摘要:

以阴离子交换膜(碱性离子膜)为基础的能量转化与储能过程十分重要,包括碱性膜燃料电池、碱性膜电解水制氢等,该类电膜过程对未来能源结构会产生深远影响。现有阴离子交换膜存在耐碱性差、性能衰减显著的问题,严重制约高效能源储存及转化技术发展。为了获得高稳定的碱性离子膜,近年来,围绕耐碱高分子材料的分子设计开展大量工作。本综述从碱性膜材料的高分子骨架和阳离子基团两个角度出发,针对膜材料耐碱性,重点阐述聚烯烃和聚芳基的主链结构,以及非金属中心、金属中心,两类阳离子的分子结构设计策略,展望高稳定碱性膜的结构设计规律及主要挑战,为设计与合成高性能碱性离子膜,满足清洁能源转化与储能膜过程提供新思路。

关键词: 碱性离子膜, 耐碱稳定性, 高分子骨架, 阳离子基团, 燃料电池, 电解水

Abstract:

Energy conversion and energy storage processes based on anion exchange membranes (alkaline ion membranes) are very important, including alkaline membrane fuel cells, alkaline membrane electrolysis of water to produce hydrogen, etc. This type of electrical membrane process will have a profound impact on the future energy structure influences. Existing anion exchange membranes often suffered from problems of poor alkali resistance and short life span, which severely restrict the development of efficient energy storage and conversion technologies. Recently, researchers have carried out a lot of novel molecular design for alkaline membrane materials of highly chemical stability. This review is based on the two perspectives of alkaline anion exchange membranes and the polymer backbone and cationic groups, focusing on the molecular design strategies including polyolefin and poly-aryl backbone structure, as well as non-metal or metal cationic groups. Moreover, regular methods and current deficiencies of high-stability alkaline anion exchange membranes structural design is summarized, and new ideas for synthesis of next generation high-performance materials for energy conversion processes is also proposed.

Key words: alkaline anion exchange membrane, alkali resistance, polymer backbone, cationic group, fuel cell, water electrolysis

中图分类号: 

  • O 658.6+8

图1

碱性膜燃料电池(a)与碱性膜电解水(b)原理图"

图2

2006~2020年相关领域被Web of Science收录的文章数量。关键词:(a)“Anion Exchange Membrane”&“Fuel Cell”;(b)“Anion Exchange Membrane”&“Water Electrolysis”。相关数据统计截至2020年10月"

图3

影响阴离子交换膜稳定性设计的因素"

图4

Z-N配位聚合制备FxC9N[29](a) 材料合成方法;(b) AEMFC稳定性测试"

图5

开环聚合制备AAEM-17[30](a) 材料合成方法;(b) 基于电导率变化的耐碱性测试"

图6

基于侧链修饰方法的QB-g-F[40](a) 材料合成方法及分子结构;(b) 2 mol·L-1 OH-,60℃, 基于电导率变化的耐碱性测试"

图7

超酸催化方法制备聚芳基主链型PAP-BP-x和PAP-TP-x[46](a) 聚合物分子结构;(b) 基于NMR方法的耐碱性测试;(c) 1 mol·L-1 KOH、100℃下的电导率随时间的变化"

图8

Yamamoto耦合聚合方法制备聚芳基主链型PAImXY[48](a) 材料合成方法;(b) 6 mol·L-1 KOH下水电解稳定性测试"

图9

已报道的AEMs阳离子基团化学结构"

图10

烷基链季铵盐在OH-进攻下可能发生的降解机理"

图11

奎宁盐阳离子基团PDPF-Qui[56](a) 聚合物分子结构;(b) 基于NMR检测的耐碱稳定性"

图12

螺环型季铵盐型AEMs[60](a) 分子结构及膜材料;(b),(c) 碱性稳定性测试下的NMR变化情况"

图13

基于咪唑系列模型分子的耐碱稳定性[66]"

图14

交联吡唑型PXm-Tn构筑OH-高速传导通道[67](a) 分子结构及合成方法;(b) 1 mol·L-1 KOH,80℃下基于电导率变化的耐碱稳定性测试;(c) AEMFC稳定性测试"

图15

二茂钴金属中心型H-AEM-OH[32](a) 分子结构及合成方法;(b) 1 mol·L-1 KOH, 80℃下基于电导率变化的耐碱稳定性测试"

表1

不同阳离子基团AEMs电导率及耐碱稳定性"

类别

阳离子

基团

AEMs名称聚合物主链IEC/ (mmol·g-1)电导率/(mS·cm-1)稳定性文献
非芳香型季铵盐DBACO型CL-QDPEEKOH聚醚醚酮1.251(55℃)50%电导率保持(2 mol·L-1 KOH, 60℃,120 h)[54]
奎宁型PDPF-Qui超酸催化聚芳基1.99100(80℃)91.2%电导率保持(5 mol·L-1 NaOH,90℃,168 h)[56]
哌啶型PAP-TP超酸催化聚芳基2.37193(95℃)97%电导率保持(1 mol·L-1 KOH,100℃,2000 h)[46]
吡咯型PyrPIB超酸催化聚芳基1.7949.08(80℃)64.8%电导率保持(1 mol·L-1 NaOH,80℃,1050 h)[59]
螺环型Spiro-ionenes螺环-阳离子聚合物4120(90℃)(与聚苯并咪唑共混后)NMR谱图无变化(1 mol·L-1 KOH,80℃,1800 h)[60]
芳香型季铵盐胍型M-PAES-TMG含氟聚芳醚1.0336(80℃)63.9%电导率保持(0.5 mol·L-1 NaOH,80℃, 382 h)[75]
咪唑型Syne-IM PPO聚苯醚1.6034(80℃)95%电导率保持(1 mol·L-1 KOH,80℃,48 h)[64]
吡唑型PXm-Tn全交联聚芳基0.91111.6(80℃)76%电导率保持(1 mol·L-1 KOH, 80℃,720 h)[67]

氨基

AAEM-17聚烯烃0.67±0.122±1(22℃)81.8%电导率保持(1 mol·L-1 KOH,80℃,22 d)[30]

芳基

TPQPOH聚醚砜1.0927(20℃)100%电导率保持(1 mol·L-1 KOH,80℃,48 h)[69]
金属盐二茂钴型H-AEM-OH聚烯烃1.8690(90℃)95%电导率保持(1 mol·L-1 NaOH, 1个月)[32]

配位

金属型

DCPD AEMs聚烯烃1.428.6(30℃)7%质量损失(1 mol·L-1 NaOH,80℃,24 h)[33]
13 王培灿, 雷青, 刘帅, 等. 电解水制氢MoS2催化剂研究与氢能技术展望[J]. 化工进展, 2019, 38(1): 278-290.
Wang P C, Lei Q, Liu S, et al. MoS2-based electrocatalysts for hydrogen evolution and the prospect of hydrogen energy technology[J]. Chemical Industry and Engineering Progress, 2019, 38(1): 278-290.
14 Lee W H, Kim Y S, Bae C. Robust hydroxide ion conducting poly(biphenyl alkylene)s for alkaline fuel cell membranes[J]. ACS Macro Letters, 2015, 4(8): 814-818.
15 You W, Noonan K J T, Coates G W. Alkaline-stable anion exchange membranes: a review of synthetic approaches[J]. Progress in Polymer Science, 2020, 100: 101-177.
16 Marino M G, Kreuer K D. Alkaline stability of quaternary ammonium cations for alkaline fuel cell membranes and ionic liquids[J]. ChemSusChem, 2015, 8(3): 513-523.
17 Hu J, Zhang C X, Cong J, et al. Plasma-grafted alkaline anion-exchange membranes based on polyvinyl chloride for potential application in direct alcohol fuel cell[J]. Journal of Power Sources, 2011, 196(10): 4483-4490.
18 Ran J, Wu L, Lin X C, et al. Synthesis of soluble copolymers bearing ionic graft for alkaline anion exchange membrane[J]. RSC Advances, 2012, 2(10): 4250-4257.
19 Olsson J S, Pham T H, Jannasch P. Functionalizing polystyrene with N-alicyclic piperidine-based cations via Friedel–Crafts alkylation for highly alkali-stable anion-exchange membranes[J]. Macromolecules, 2020, 53(12):4722-4732.
20 Danks T N, Slade R C T, Varcoe J R. Comparison of PVDF- and FEP-based radiation-grafted alkaline anion-exchange membranes for use in low temperature portable DMFCs[J]. Journal of Materials Chemistry, 2002, 12(12): 3371-3373.
21 Fang J, Yang Y X, Lu X H, et al. Cross-linked, ETFE-derived and radiation grafted membranes for anion exchange membrane fuel cell applications[J]. International Journal of Hydrogen Energy, 2012, 37(1): 594-602.
22 Willdorf-Cohen S, Mondal A N, Dekel D R, et al. Chemical stability of poly(phenylene oxide)-based ionomers in an anion exchange-membrane fuel cell environment[J]. Journal of Materials Chemistry A, 2018, 6(44): 22234-22239.
23 Liu M Y, Wang Z, Mei J, et al. A facile functionalized routine for the synthesis of imidazolium-based anion-exchange membrane with excellent alkaline stability[J]. Journal of Membrane Science, 2016, 505: 138-147.
1 Varcoe J R, Atanassov P, Dekel D R, et al. Anion-exchange membranes in electrochemical energy systems[J]. Energy Environ. Sci., 2014, 7(10): 3135-3191.
2 Ran J, Wu L, Ru Y F, et al. Anion exchange membranes (AEMs) based on poly(2, 6-dimethyl-1, 4-phenylene oxide) (PPO) and its derivatives[J]. Polymer Chemistry, 2015, 6(32): 5809-5826.
3 Strathmann H. Electrodialysis, a mature technology with a multitude of new applications[J]. Desalination, 2010, 264(3): 268-288.
4 Ran J, Wu L, He Y B, et al. Ion exchange membranes: new developments and applications[J]. Journal of Membrane Science, 2017, 522: 267-291.
5 Strathmann H, Grabowski A, Eigenberger G. Ion-exchange membranes in the chemical process industry[J]. Industrial & Engineering Chemistry Research, 2013, 52(31): 10364-10379.
6 Varcoe J R, Slade R C T. Prospects for alkaline anion-exchange membranes in low temperature fuel cells[J]. Fuel Cells, 2005, 5(2): 187-200.
24 Kim D J, Lee B N, Nam S Y. Synthesis and characterization of PEEK containing imidazole for anion exchange membrane fuel cell[J]. International Journal of Hydrogen Energy, 2017, 42(37): 23759-23767.
25 Jeon J Y, Park S, Han J, et al. Synthesis of aromatic anion exchange membranes by Friedel–Crafts bromoalkylation and cross-linking of polystyrene block copolymers[J]. Macromolecules, 2019, 52(5): 2139-2147.
26 Chen X L, Xiu Q W, En N H, et al. Quaternized triblock polymer anion exchange membranes with enhanced alkaline stability[J]. Journal of Membrane Science, 2017, 541: 358-366.
27 Varcoe J R, Slade R C T, Lam How Yee E, et al. Poly(ethylene-co-tetrafluoroethylene)-derived radiation-grafted anion-exchange membrane with properties specifically tailored for application in metal-cation-free alkaline polymer electrolyte fuel cells[J]. Chemistry of Materials, 2007, 19(10): 2686-2693.
28 Zhang M, Shan C R, Liu L, et al. Facilitating anion transport in polyolefin-based anion exchange membranes via bulky side chains[J]. ACS Applied Materials & Interfaces, 2016, 8(35): 23321-23330.
29 Zhu L, Peng X, Shang S L, et al. High performance anion exchange membrane fuel cells enabled by fluoropoly(olefin) membranes[J]. Advanced Functional Materials, 2019, 29(26): 1902059.
7 Ursua A, Gandia L M, Sanchis P. Hydrogen production from water electrolysis: current status and future trends[J]. Proceedings of the IEEE, 2012, 100(2): 410-426.
8 Hickner M A, Ghassemi H, Kim Y S, et al. Alternative polymer systems for proton exchange membranes (PEMs)[J]. Chemical Reviews, 2004, 104(10): 4587-4612.
9 Siracusano S, Baglio V, Briguglio N, et al. An electrochemical study of a PEM stack for water electrolysis[J]. International Journal of Hydrogen Energy, 2012, 37(2): 1939-1946.
10 Varcoe J R, Slade R C T, Lam How Yee E. An alkaline polymer electrochemical interface: a breakthrough in application of alkaline anion-exchange membranes in fuel cells[J]. Chemical Communications, 2006, (13): 1428-1429.
11 Leng Y J, Chen G, Mendoza A J, et al. Solid-state water electrolysis with an alkaline membrane[J]. Journal of the American Chemical Society, 2012, 134(22): 9054-9057.
12 万磊, 赖忆铭, 王保国. 离子交换膜界面结构对膜电极性能影响的研究进展[J]. 膜科学与技术, 2019, 39(4): 132-141, 147.
30 Noonan K J, Hugar K M, Kostalik H A, et al. Phosphonium-functionalized polyethylene: a new class of base-stable alkaline anion exchange membranes[J]. Journal of the American Chemical Society, 2012, 134(44): 18161-18164.
31 Kostalik H A, Clark T J, Robertson N J, et al. Solvent processable tetraalkylammonium-functionalized polyethylene for use as an alkaline anion exchange membrane[J]. Macromolecules, 2010, 43(17): 7147-7150.
12 Wan L, Lai Y M, Wang B G. Recent progress in patterning ion exchange membrane interface for membrane electrode assembly[J]. Membrane Science and Technology, 2019, 39(4): 132-141, 147.
32 Zhu T, Xu S C, Rahman A, et al. Cationic metallo-polyelectrolytes for robust alkaline anion-exchange membranes[J]. Angewandte Chemie International Edition, 2018, 57(9): 2388-2392.
33 Zha Y P, Disabb-Miller M L, Johnson Z D, et al. Metal-cation-based anion exchange membranes[J]. Journal of the American Chemical Society, 2012, 134(10): 4493-4496.
34 Li Y F, Liu Y, Savage A M, et al. Polyethylene-based block copolymers for anion exchange membranes[J]. Macromolecules, 2015, 48(18): 6523-6533.
35 Gu F L, Dong H L, Li Y Y, et al. Base stable pyrrolidinium cations for alkaline anion exchange membrane applications[J]. Macromolecules, 2014, 47(19): 6740-6747.
36 Nuñez S A, Hickner M A. Quantitative 1H NMR analysis of chemical stabilities in anion-exchange membranes[J]. ACS Macro Letters, 2013, 2(1): 49-52.
37 Zhang S L, Wu C M, Xu T W, et al. Synthesis and characterizations of anion exchange organic-inorganic hybrid materials based on poly(2, 6-dimethyl-1, 4-phenylene oxide) (PPO)[J]. Journal of Solid State Chemistry, 2005, 178(7): 2292-2300.
38 Xu T W, Liu Z M, Li Y, et al. Preparation and characterization of Type Ⅱ anion exchange membranes from poly(2, 6-dimethyl-1, 4-phenylene oxide) (PPO)[J]. Journal of Membrane Science, 2008, 320(1/2): 232-239.
39 Mohanty A D, Tignor S E, Krause J A, et al. Systematic alkaline stability study of polymer backbones for anion exchange membrane applications[J]. Macromolecules, 2016, 49(9): 3361-3372.
40 Ran J, Ding L, Yu D B, et al. A novel strategy to construct highly conductive and stabilized anionic channels by fluorocarbon grafted polymers[J]. Journal of Membrane Science, 2018, 549: 631-637.
41 Dang H S, Weiber E A, Jannasch P. Poly(phenylene oxide) functionalized with quaternary ammonium groups via flexible alkyl spacers for high-performance anion exchange membranes[J]. Journal of Materials Chemistry A, 2015, 3(10): 5280-5284.
42 Cruz A R, Zolotukhin M G, Morales S L, et al. Use of 4-piperidones in one-pot syntheses of novel, high-molecular-weight linear and virtually 100%-hyperbranched polymers[J]. Chemical Communications, 2009, (29): 4408-4410.
43 Cruz A R, Hernandez M C G, Guzmán-Gutiérrez M T, et al. Precision synthesis of narrow polydispersity, ultrahigh molecular weight linear aromatic polymers by A2 + B2 nonstoichiometric step-selective polymerization[J]. Macromolecules, 2012, 45(17): 6774-6780.
44 Chen N J, Hu C, Wang H H, et al. Poly(alkyl-terphenyl piperidinium) ionomers and membranes with an outstanding alkaline-membrane fuel-cell performance of 2.58 W·cm-2[J]. Angewandte Chemie International Edition, 2021, 60(14): 7710-7718.
45 Olsson J S, Pham T H, Jannasch P. Poly(arylene piperidinium) hydroxide ion exchange membranes: synthesis, alkaline stability, and conductivity[J]. Advanced Functional Materials, 2018, 28(2): 1702758.
46 Wang J H, Zhao Y, Setzler B P, et al. Poly(aryl piperidinium) membranes and ionomers for hydroxide exchange membrane fuel cells[J]. Nature Energy, 2019, 4(5): 392-398.
47 Miyanishi S, Yamaguchi T. Highly durable spirobifluorene-based aromatic anion conducting polymer for a solid ionomer of alkaline fuel cells and water electrolysis cells[J]. Journal of Materials Chemistry A, 2019, 7(5): 2219-2224.
48 Fan J T, Willdorf-Cohen S, Schibli E M, et al. Poly(bis-arylimidazoliums) possessing high hydroxide ion exchange capacity and high alkaline stability[J]. Nature Communications, 2019, 10: 2306.
49 Wright A G, Weissbach T, Holdcroft S. Poly(phenylene) and m-terphenyl as powerful protecting groups for the preparation of stable organic hydroxides[J]. Angewandte Chemie International Edition, 2016, 55(15): 4818-4821.
50 Luo T, Abdu S, Wessling M. Selectivity of ion exchange membranes: a review[J]. Journal of Membrane Science, 2018, 555: 429-454.
51 Merle G, Wessling M, Nijmeijer K. Anion exchange membranes for alkaline fuel cells: a review[J]. Journal of Membrane Science, 2011, 377(1/2): 1-35.
52 Lu W T, Zhang G, Li J, et al. Polybenzimidazole-crosslinked poly(vinylbenzyl chloride) with quaternary 1, 4-diazabicyclo (2.2.2) octane groups as high-performance anion exchange membrane for fuel cells[J]. Journal of Power Sources, 2015, 296: 204-214.
53 Wang X, Li M Q, Golding B T, et al. A polytetrafluoroethylene-quaternary 1, 4-diazabicyclo-[2.2.2]-octane polysulfone composite membrane for alkaline anion exchange membrane fuel cells[J]. International Journal of Hydrogen Energy, 2011, 36(16): 10022-10026.
54 Wang J J, He G H, Wu X M, et al. Crosslinked poly (ether ether ketone) hydroxide exchange membranes with improved conductivity[J]. Journal of Membrane Science, 2014, 459: 86-95.
55 Das G, Park B J, Yoon H H. A bionanocomposite based on 1, 4-diazabicyclo-[2.2.2]-octane cellulose nanofiber cross-linked-quaternary polysulfone as an anion conducting membrane[J]. Journal of Materials Chemistry A, 2016, 4(40): 15554-15564.
56 Allushi A, Pham T H, Olsson J S, et al. Ether-free polyfluorenes tethered with quinuclidinium cations as hydroxide exchange membranes[J]. Journal of Materials Chemistry A, 2019, 7(47): 27164-27174.
57 Strasser D J, Graziano B J, Knauss D M. Base stable poly(diallylpiperidinium hydroxide) multiblock copolymers for anion exchange membranes[J]. Journal of Materials Chemistry A, 2017, 5(20): 9627-9640.
58 Olsson J S, Pham T H, Jannasch P. Poly(N,N-diallylazacycloalkane)s for anion-exchange membranes functionalized with N-spirocyclic quaternary ammonium cations[J]. Macromolecules, 2017, 50(7): 2784-2793.
59 Zhang S, Zhu X L, Jin C H. Development of a high-performance anion exchange membrane using poly(isatin biphenylene) with flexible heterocyclic quaternary ammonium cations for alkaline fuel cells[J]. Journal of Materials Chemistry A, 2019, 7(12): 6883-6893.
60 Pham T H, Olsson J S, Jannasch P. N-spirocyclic quaternary ammonium ionenes for anion-exchange membranes[J]. Journal of the American Chemical Society, 2017, 139(8): 2888-2891.
61 Xiao L, Zhang H, Jana T, et al. Synthesis and characterization of pyridine-based polybenzimidazoles for high temperature polymer electrolyte membrane fuel cell applications[J]. Fuel Cells, 2005, 5(2): 287-295.
62 Li W, Fang J, Lv M, et al. Novel anion exchange membranes based on polymerizable imidazolium salt for alkaline fuel cell applications[J]. Journal of Materials Chemistry, 2011, 21(30): 11340.
63 Lin B C, Dong H L, Li Y Y, et al. Alkaline stable C2-substituted imidazolium-based anion-exchange membranes[J]. Chemistry of Materials, 2013, 25(9): 1858-1867.
64 Wang J H, Gu S, Kaspar R B, et al. Stabilizing the imidazolium cation in hydroxide-exchange membranes for fuel cells[J]. ChemSusChem, 2013, 6(11): 2079-2082.
65 Zhu Y, He Y, Ge X, et al. A benzyltetramethylimidazolium-based membrane with exceptional alkaline stability in fuel cells: role of its structure in alkaline stability[J]. Journal of Materials Chemistry A, 2018, 6(2):527-534
66 Hugar K M, Kostalik H A, Coates G W. Imidazolium cations with exceptional alkaline stability: a systematic study of structure-stability relationships[J]. Journal of the American Chemical Society, 2015, 137(27): 8730-8737.
67 Kim Y, Wang Y, France-Lanord A, et al. Ionic highways from covalent assembly in highly conducting and stable anion exchange membrane fuel cells[J]. Journal of the American Chemical Society, 2019, 141(45): 18152-18159.
68 Ye Y S, Stokes K K, Beyer F L, et al. Development of phosphonium-based bicarbonate anion exchange polymer membranes[J]. Journal of Membrane Science, 2013, 443: 93-99.
69 Gu S, Cai R, Luo T, et al. A soluble and highly conductive ionomer for high-performance hydroxide exchange membrane fuel cells[J]. Angewandte Chemie International Edition, 2009, 48(35): 6499-6502.
70 Barnes A, Du Y F, Zhang W X, et al. Phosphonium-containing block copolymer anion exchange membranes: effect of quaternization level on bulk and surface morphologies at hydrated and dehydrated states[J]. Macromolecules, 2019, 52(16): 6097-6106.
71 Tang H Y, Li D F, Li N W, et al. Anion conductive poly(2, 6-dimethyl phenylene oxide)s with clicked bulky quaternary phosphonium groups[J]. Journal of Membrane Science, 2018, 558: 9-16.
72 Zhang B Z, Kaspar R B, Gu S, et al. A new alkali-stable phosphonium cation based on fundamental understanding of degradation mechanisms[J]. ChemSusChem, 2016, 9(17): 2374-2379.
73 Kwasny M T, Zhu L, Hickner M A, et al. Thermodynamics of counterion release is critical for anion exchange membrane conductivity[J]. Journal of the American Chemical Society, 2018, 140(25): 7961-7969.
74 Zhu T, Sha Y, Firouzjaie H A, et al. Rational synthesis of metallo-cations toward redox-and alkaline-stable metallo-polyelectrolytes[J]. Journal of the American Chemical Society, 2020, 142(2): 1083-1089.
75 Kim D S, Labouriau A, Guiver M D, et al. Guanidinium-functionalized anion exchange polymer electrolytes via activated fluorophenyl-amine reaction[J]. Chemistry of Materials, 2011, 23(17): 3795-3797.
[1] 魏琳, 郭剑, 廖梓豪, Dafalla Ahmed Mohmed, 蒋方明. 空气流量对空冷燃料电池电堆性能的影响研究[J]. 化工学报, 2022, 73(7): 3222-3231.
[2] 张红锐, 张田, 隆曦孜, 李先宁. 光催化与微生物燃料电池耦合对Cu-EDTA的降解特性[J]. 化工学报, 2022, 73(5): 2149-2157.
[3] 李文怀, 周嵬. 高氧离子电导钙钛矿的影响因素分析和设计策略[J]. 化工学报, 2022, 73(4): 1455-1471.
[4] 付凤艳, 邢广恩. 碱性燃料电池用阴离子交换膜的研究进展[J]. 化工学报, 2021, 72(S1): 42-52.
[5] 刘璇, 马溢昌, 张秋根, 刘庆林. 富勒烯交联季铵化聚苯醚阴离子交换膜的制备[J]. 化工学报, 2021, 72(7): 3849-3855.
[6] 宇高义郎, 许竞莹, 王国卓, 陈志豪. 质子交换膜燃料电池内含水气体扩散层的冻结特性研究[J]. 化工学报, 2021, 72(4): 2276-2282.
[7] 徐斌. 基于改进差分进化算法的质子交换膜燃料电池模型参数优化识别[J]. 化工学报, 2021, 72(3): 1512-1520.
[8] 朱鹏飞, 郭磊磊, 尧兢, 杨福胜, 张早校, 吴震. 以生物质为燃料的SOFC和发动机热电联供系统:参数分析和性能优化[J]. 化工学报, 2021, 72(2): 1089-1099.
[9] 郭佳宁, 向中华. 金属大环化合物基氧还原电催化剂的研究进展[J]. 化工学报, 2021, 72(1): 384-397.
[10] 张劲, 郭志斌, 张巨佳, 王海宁, 相艳, 蒋三平, 卢善富. 聚醚砜-聚乙烯吡咯烷酮高温聚合物电解质膜及燃料电池堆性能研究[J]. 化工学报, 2021, 72(1): 589-596.
[11] 李慧, 杨正金, 徐铜文. 高温质子交换膜研究进展[J]. 化工学报, 2021, 72(1): 132-142.
[12] 韩超灵, 陈振乾. 添加碳纳米颗粒对磷氮双掺杂石墨烯电化学特性的影响[J]. 化工学报, 2020, 71(S1): 448-453.
[13] 肖扬, 徐春明, 杨晓霞, 张立红, 孙旺, 乔金硕, 王振华, 孙克宁. NiMn2O4尖晶石氧化物阴极的制备及电化学性能研究[J]. 化工学报, 2020, 71(9): 4292-4302.
[14] 陈海涛, 乔金硕, 王振华, 孙旺, 李海军, 孙克宁. 原位双金属纳米颗粒YST复合阳极的构筑及其直接碳催化性能研究[J]. 化工学报, 2020, 71(9): 4270-4281.
[15] 穆嫒萍, 叶丁丁, 陈蓉, 朱恂, 廖强. 基于棉线的微流体燃料电池阳极传质特性LB模拟[J]. 化工学报, 2020, 71(7): 3278-3287.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!