化工学报 ›› 2021, Vol. 72 ›› Issue (8): 3907-3918.DOI: 10.11949/0438-1157.20210432
景博(),常泽伟(),贾晟哲,吴送姑,陈明洋,高振国(),龚俊波
收稿日期:
2021-03-29
修回日期:
2021-06-03
出版日期:
2021-08-05
发布日期:
2021-08-05
通讯作者:
高振国
作者简介:
景博(1997—),男,硕士研究生,基金资助:
Bo JING(),Zewei CHANG(),Shengzhe JIA,Songgu WU,Mingyang CHEN,Zhenguo GAO(),Junbo GONG
Received:
2021-03-29
Revised:
2021-06-03
Online:
2021-08-05
Published:
2021-08-05
Contact:
Zhenguo GAO
摘要:
熔融结晶作为一种绿色高效的分离技术具有选择性高、能量消耗低、无须溶剂参与等优势,但在结晶理论研究、连续化生产、专用结晶器设计和工业放大等方面仍面临挑战。熔融结晶分离效率受物系性质、原料纯度和晶体生长速率限制。因此,熔融结晶过程的合理设计和过程优化对提高熔融结晶技术的能量和过程效率具有重要意义。基于熔融结晶技术在化工分离过程中的实际需求和应用前景,从熔融结晶过程工艺优化、晶体层生长表面设计、过程工艺耦合三方面论述熔融结晶过程中晶体成核、生长的强化方式,为达到高效率、低能耗的熔融结晶分离过程提供可行性指导。最后,概述了目前熔融结晶技术的主要研究焦点并对发展方向进行了展望。
中图分类号:
景博, 常泽伟, 贾晟哲, 吴送姑, 陈明洋, 高振国, 龚俊波. 熔融结晶的过程强化[J]. 化工学报, 2021, 72(8): 3907-3918.
Bo JING, Zewei CHANG, Shengzhe JIA, Songgu WU, Mingyang CHEN, Zhenguo GAO, Junbo GONG. Process intensification of melt crystallization[J]. CIESC Journal, 2021, 72(8): 3907-3918.
1 | Ulrich J, Bülau H C. Melt Crystallization[M]// Myerson A S. Handbook of Industrial Crystallization. 2nd ed. Woburn: Butterworth-Heinemann, 2002: 161-179. |
2 | Beckmann W. Crystallization: Basic Concepts and Industrial Applications[M]. Weinheim: Wiley-VCH, 2013: 289-304. |
3 | Mulvihill M J, Beach E S, Zimmerman J B, et al. Green chemistry and green engineering: a framework for sustainable technology development[J]. Annual Review of Environment and Resources, 2011, 36(1): 271-293. |
4 | Ulrich J. Is melt crystallization a green technology?[J]. Crystal Growth & Design, 2004, 4(5): 879-880. |
5 | Wang B M, Li J, Qi Y B, et al. Phosphoric acid purification by suspension melt crystallization: parametric study of the crystallization and sweating steps[J]. Crystal Research and Technology, 2012, 47(10): 1113-1120. |
6 | König A, Stepanski M, Kuszlik A, et al. Ultra-purification of ionic liquids by melt crystallization[J]. Chemical Engineering Research and Design, 2008, 86(7): 775-780. |
7 | Ahmad M, Ulrich J. Separation of complex feed streams of a product by layer melt crystallization[J]. Chemical Engineering & Technology, 2016, 39(7): 1341-1345. |
8 | Shiau L D. The dependence of effective distribution coefficient on growth rate and mass transfer coefficient for p-xylene in solid-layer melt crystallization[J]. Processes, 2020, 8(2): 175. |
9 | Jia S Z, Jing B, Gao Z G, et al. Melt crystallization of 2, 4-dinitrochlorobenzene: purification and process parameters evaluation[J]. Separation and Purification Technology, 2021, 259: 118140. |
10 | Liu Q, Li Z J, Liu B S, et al. A new melt crystallization process for efficient purification of chlorobromobenzene[J]. Separation and Purification Technology, 2020, 251: 117367. |
11 | Beierling T, Ruether F. Separation of the isomeric long-chain aldehydes dodecanal/2-methylundecanal via layer melt crystallization[J]. Chemical Engineering Science, 2012, 77: 71-77. |
12 | Cong S, Li X G, Wu J, et al. Optimization of parameters for melt crystallization of p-cresol[J]. Chinese Journal of Chemical Engineering, 2012, 20(4): 649-653. |
13 | Cong S, Liu Y, Li H, et al. Purification and separation of durene by static melt crystallization[J]. Chinese Journal of Chemical Engineering, 2015, 23(3): 505-509. |
14 | Jiang X B, Li M, He G H, et al. Research progress and model development of crystal layer growth and impurity distribution in layer melt crystallization: a review[J]. Industrial & Engineering Chemistry Research, 2014, 53(34): 13211-13227. |
15 | Jung J W, Lee H S, Kim K J. Purification of acetic acid wastewater using layer melt crystallization[J]. Separation Science and Technology, 2008, 43(5): 1021-1033. |
16 | Rich A, Mandri Y, Bendaoud N, et al. Freezing desalination of sea water in a static layer crystallizer[J]. Desalination and Water Treatment, 2010, 13(1/2/3): 120-127. |
17 | 陈亮. 对二甲苯悬浮结晶分离技术进展[J]. 现代化工, 2020, 40(2): 57-61. |
Chen L. Progress in separation of para-xylene by suspension crystallization technology[J]. Modern Chemical Industry, 2020, 40(2): 57-61. | |
18 | Beierling T, Gorny R, Sadowski G. Modeling growth rates in static layer melt crystallization[J]. Crystal Growth & Design, 2013, 13(12): 5229-5240. |
19 | Ding S P, Huang X, Yin Q X, et al. Heat transfer and its effect on growth behaviors of crystal layers during static layer melt crystallization[J]. Chemical Engineering Science, 2021, 233: 116390. |
20 | Jiang X B, Xiao W, He G H. Falling film melt crystallization (Ⅲ): Model development, separation effect compared to static melt crystallization and process optimization[J]. Chemical Engineering Science, 2014, 117: 198-209. |
21 | Yazdanpanah N, Myerson A, Trout B. Mathematical modeling of layer crystallization on a cold column with recirculation[J]. Industrial & Engineering Chemistry Research, 2016, 55(17): 5019-5029. |
22 | Jiang X B, Hou B H, He G H, et al. Falling film melt crystallization (I): Model development, experimental validation of crystal layer growth and impurity distribution process[J]. Chemical Engineering Science, 2012, 84: 120-133. |
23 | Jiang X B, Hou B H, Wang J K, et al. Model to simulate the structure of a crystal pillar and optimize the separation efficiency in melt crystallization by fractal theory and technique[J]. Industrial & Engineering Chemistry Research, 2011, 50(17): 10229-10245. |
24 | Jiang X B, Hou B H, Zhao Y Y, et al. Kinetics study on the liquid entrapment and melt transport of static and falling-film melt crystallization[J]. Industrial & Engineering Chemistry Research, 2012, 51(13): 5037-5044. |
25 | Jiang X B, Wang J K, Hou B H, et al. Progress in the application of fractal porous media theory to property analysis and process simulation in melt crystallization[J]. Industrial & Engineering Chemistry Research, 2013, 52(45): 15685-15701. |
26 | Kim Y H, Park L K, Yiacoumi S, et al. Modular chemical process intensification: a review[J]. Annual Review of Chemical and Biomolecular Engineering, 2017, 8: 359-380. |
27 | König A, Schreiner A. Purification potential of melt crystallisation[J]. Powder Technology, 2001, 121(1): 88-92. |
28 | Sear R P. Nucleation: theory and applications to protein solutions and colloidal suspensions[J]. Journal of Physics: Condensed Matter, 2007, 19(3): 033101. |
29 | Kashchiev D, van Rosmalen G M. Review: nucleation in solutions revisited[J]. Crystal Research and Technology, 2003, 38(7/8): 555-574. |
30 | Haasner T, Kuszlik A K, Stadler R, et al. Surface properties — a key for nucleation in melt crystallization processes[J]. Chemical Engineering & Technology, 2001, 24(9): 873-878. |
31 | Ma S Y, Li C, Gao J, et al. Artificial neural network prediction of metastable zone widths in reactive crystallization of lithium carbonate[J]. Industrial & Engineering Chemistry Research, 2020, 59(16): 7765-7776. |
32 | Wang T F, Li X, Dong J X. Ethylene glycol purification by melt crystallization: removal of short-chain glycol impurities[J]. Industrial & Engineering Chemistry Research, 2020, 59(18): 8805-8812. |
33 | Beierling T, Osiander J, Sadowski G. Melt crystallization of isomeric long-chain aldehydes from hydroformylation[J]. Separation and Purification Technology, 2013, 118: 13-24. |
34 | Rich A, Mandri Y, Mangin D, et al. Sea water desalination by dynamic layer melt crystallization: parametric study of the freezing and sweating steps[J]. Journal of Crystal Growth, 2012, 342(1): 110-116. |
35 | Le Page Mostefa M, Muhr H, Plasari E, et al. A purification route of bio-acrylic acid by melt crystallization respectful of environmental constraints[J]. Powder Technology, 2014, 255: 98-102. |
36 | Wong S Y, Cui Y Q, Myerson A S. Contact secondary nucleation as a means of creating seeds for continuous tubular crystallizers[J]. Crystal Growth & Design, 2013, 13(6): 2514-2521. |
37 | Agrawal S G, Paterson A H J. Secondary nucleation: mechanisms and models[J]. Chemical Engineering Communications, 2015, 202(5): 698-706. |
38 | Anwar J, Khan S, Lindfors L. Secondary crystal nucleation: nuclei breeding factory uncovered[J]. Angewandte Chemie International Edition, 2015, 54(49): 14681-14684. |
39 | Jiang X B, Wang J K, Hou B H. Coarse crystal layer growth and liquid entrapment study with gradient freeze technology[J]. Crystal Research and Technology, 2012, 47(6): 649-657. |
40 | 张纲, 王静康, 熊晖. 沉淀结晶过程中的添加晶种技术[J]. 化学世界, 2002, 43(6): 326-328. |
Zhang G, Wang J K, Xiong H. Seeding technology on the precipitation crystallization process[J]. Chemical World, 2002, 43(6): 326-328. | |
41 | Kubota N, Doki N, Yokota M, et al. Seeding policy in batch cooling crystallization[J]. Powder Technology, 2001, 121(1): 31-38. |
42 | Choi W S, Kim K J. Separation of acetic acid from acetic acid-water mixture by crystallization[J]. Separation Science and Technology, 2013, 48(7): 1056-1061. |
43 | Shirai Y, Wakisaka M, Miyawaki O, et al. Effect of seed ice on formation of tube ice with high purity for a freeze wastewater treatment system with a bubble-flow circulator[J]. Water Research, 1999, 33(5): 1325-1329. |
44 | Matsuoka M, Fukuda T, Takagi Y, et al. Purification of organic solid solutions by melt crystallization: comparison between layer and suspension crystallization[J]. Journal of Crystal Growth, 1996, 166(1/2/3/4): 1035-1039. |
45 | Fang C, Tang W W, Wu S G, et al. Ultrasound-assisted intensified crystallization of L-glutamic acid: crystal nucleation and polymorph transformation[J]. Ultrasonics Sonochemistry, 2020, 68: 105227. |
46 | Zeng G S, Li H, Luo S L, et al. Effects of ultrasonic radiation on induction period and nucleation kinetics of sodium sulfate[J]. Korean Journal of Chemical Engineering, 2014, 31(5): 807-811. |
47 | Nii S, Takayanagi S. Growth and size control in anti-solvent crystallization of glycine with high frequency ultrasound[J]. Ultrasonics Sonochemistry, 2014, 21(3): 1182-1186. |
48 | 朱涛. 超声结晶及其应用[J]. 现代物理知识, 2007, 19(5): 28-29. |
Zhu T. Ultrasonic crystallization and its application [J]. Modern Physics, 2007, 19(5): 28-29. | |
49 | Adachi H, Takano K, Niino A, et al. Solution stirring initiates nucleation and improves the quality of adenosine deaminase crystals[J]. Acta Crystallographica. Section D, Biological Crystallography, 2005, 61(6): 759-762. |
50 | Yan F W, Zhang S F, Guo C Y, et al. Influence of stirring speed on the crystallization of calcium carbonate[J]. Crystal Research and Technology, 2009, 44(7): 725-728. |
51 | Lacmann R, Herden A, Mayer C. Kinetics of nucleation and crystal growth[J]. Chemical Engineering & Technology, 1999, 22(4): 279-289. |
52 | Wang L P. Boron removal and its concentration in aqueous solution through progressive freeze concentration[J]. Environmental Technology, 2017, 38(17): 2224-2232. |
53 | Yuan W, Zhang L H, Liu Y, et al. Sulfide removal and water recovery from ethylene plant spent caustic by suspension crystallization and its optimization via response surface methodology[J]. Journal of Cleaner Production, 2020, 242: 118439. |
54 | Yin Y, Yang Y H, de Lourdes Mendoza M, et al. Progressive freezing and suspension crystallization methods for tetrahydrofuran recovery from Grignard reagent wastewater[J]. Journal of Cleaner Production, 2017, 144: 180-186. |
55 | Shimizu K, Nomura T, Takahashi K. Crystal size distribution of aluminum potassium sulfate in a batch crystallizer equipped with different types of impeller[J]. Journal of Crystal Growth, 1998, 191(1/2): 178-184. |
56 | 陈爱梅, 朱家文, 武斌, 等. 熔融悬浮结晶法提纯湿法磷酸[J]. 化学工程, 2012, 40(8): 52-56. |
Chen A M, Zhu J W, Wu B, et al. Purification of wet-process phosphoric acid by melt suspension crystallization[J]. Chemical Engineering (China), 2012, 40(8): 52-56. | |
57 | Gao Z G, Rohani S, Gong J B, et al. Recent developments in the crystallization process: toward the pharmaceutical industry[J]. Engineering, 2017, 3(3): 343-353. |
58 | Jiang X B, Lu D P, Xiao W, et al. Membrane assisted cooling crystallization: process model, nucleation, metastable zone, and crystal size distribution[J]. AIChE Journal, 2016, 62(3): 829-841. |
59 | Mullin J W. Crystallization[M]. 4th ed. Oxford: Butterworth- Heinemann, 2001: 181-214. |
60 | Kapustenko P O, Kukulka D J, Arsenyeva O P. Intensification of heat transfer processes[C]// PRES'15: Process Integration, Modelling and Optimisation for Energy Saving and Pollution Reduction. Milano, 2015: 1729-1734. |
61 | 原宇航, 钱志刚, 马建学, 等. 一种用于降膜结晶器的结晶管: 101745248B[P]. 2012-12-12. |
Yuan Y H, Qian Z G, Ma J X, et al. Crystallization tube for falling-film crystallizer: 101745248B[P]. 2012-12-12. | |
62 | Le Page Mostefa M, Muhr H, Biget A, et al. Intensification of falling film melt crystallization process through micro and milli-structured surfaces[J]. Chemical Engineering and Processing: Process Intensification, 2015, 90: 16-23. |
63 | Artusio F, Pisano R. Surface-induced crystallization of pharmaceuticals and biopharmaceuticals: a review[J]. International Journal of Pharmaceutics, 2018, 547(1/2): 190-208. |
64 | Grosfils P, Lutsko J F. Impact of surface roughness on crystal nucleation[J]. Crystals, 2020, 11(1): 4. |
65 | Beierling T, Micovic J, Lutze P, et al. Using complex layer melt crystallization models for the optimization of hybrid distillation/melt crystallization processes[J]. Chemical Engineering and Processing: Process Intensification, 2014, 85: 10-23. |
66 | Verdoes D, Arkenbout G J, Bruinsma O S L, et al. Improved procedures for separating crystals from the melt[J]. Applied Thermal Engineering, 1997, 17(8/9/10): 879-888. |
67 | van der Gun M A, Bruinsma O S L, van Rosmalen G M. Pastille purification in a gravity wash column[J]. Chemical Engineering Science, 2001, 56(7): 2381-2388. |
68 | Kim K J, Kim J K, Lee H S, et al. Process for separating and recovering naphthalene from raffinate produced from pyrolysis of naphtha via suspension crystallization, melting crystallization and partial melting steps: KR717386B1[P]. 2007-03-04. |
69 | 王彦飞,黄岐汕,彭南玉,等. 耦合熔融结晶制备高纯联苯的方法: 104311380A[P]. 2015-01-28. |
Wang Y F, Huang Q S, Peng N Y, et al. Method for preparing high-purity biphenyl by coupling and melt crystallization: 104311380A[P]. 2015-01-28. | |
70 | Konig A, Ulrich J. Method and apparatus for purifying chemical substances: US5810892 A [P]. 1998-09-22. |
71 | van der Gun M A, Bruinsma O S L, Jansens P J. Production, characterization and purification of polycrystalline particles[J]. Chemical Engineering Research and Design, 2003, 81(8): 904-915. |
72 | van der Gun M A, Bruinsma O S L, Jansens P J. Purification of polycrystalline ε-caprolactam particles[J]. Chemical Engineering Science, 2005, 60(1): 201-211. |
73 | Kiss A A. Distillation technology - still young and full of breakthrough opportunities[J]. Journal of Chemical Technology & Biotechnology, 2014, 89(4): 479-498. |
74 | Li C L, Zhou Y W, Su W Y, et al. Research progress of hybrid distillation/crystallization technology[J]. Chemical Engineering & Technology, 2018, 41(10): 1894-1904. |
75 | Franke M B, Nowotny N, Ndocko E N, et al. Design and optimization of a hybrid distillation/melt crystallization process[J]. AIChE Journal, 2008, 54(11): 2925-2942. |
76 | Ban H, Cheng Y W, Wang L J, et al. Preparation of high-purity 2,6-naphthalenedicarboxylic acid from coal tar distillate[J]. Chemical Engineering & Technology, 2019, 42(6): 1188-1198. |
77 | 叶青, 裘兆蓉, 钟秦, 等. 用精馏-降膜结晶耦合技术提纯对二氯苯[J]. 精细化工, 2005, 22(5): 362-364. |
Ye Q, Qiu Z R, Zhong Q, et al. Purification of dichlorobenzene by distillation-falling film crystallization hybrid processes[J]. Fine Chemicals, 2005, 22(5): 362-364. | |
78 | Micovic J, Beierling T, Lutze P, et al. Design of hybrid distillation/melt crystallisation processes for separation of close boiling mixtures[J]. Chemical Engineering and Processing: Process Intensification, 2013, 67: 16-24. |
79 | Kunde C, Michaels D, Micovic J, et al. Deterministic global optimization in conceptual process design of distillation and melt crystallization[J]. Chemical Engineering and Processing: Process Intensification, 2016, 99: 132-142. |
80 | Ahmad N A, Leo C P, Ahmad A L, et al. Membranes with great hydrophobicity: a review on preparation and characterization[J]. Separation & Purification Reviews, 2015, 44(2): 109-134. |
81 | Kontos S S, Katrivesis F K, Constantinou T C, et al. Implementation of membrane filtration and melt crystallization for the effective treatment and valorization of olive mill wastewaters[J]. Separation and Purification Technology, 2018, 193: 103-111. |
[1] | 张双星, 刘舫辰, 张义飞, 杜文静. R-134a脉动热管相变蓄放热实验研究[J]. 化工学报, 2023, 74(S1): 165-171. |
[2] | 张义飞, 刘舫辰, 张双星, 杜文静. 超临界二氧化碳用印刷电路板式换热器性能分析[J]. 化工学报, 2023, 74(S1): 183-190. |
[3] | 陈爱强, 代艳奇, 刘悦, 刘斌, 吴翰铭. 基板温度对HFE7100液滴蒸发过程的影响研究[J]. 化工学报, 2023, 74(S1): 191-197. |
[4] | 刘明栖, 吴延鹏. 导光管直径和长度对传热影响的模拟分析[J]. 化工学报, 2023, 74(S1): 206-212. |
[5] | 王志国, 薛孟, 董芋双, 张田震, 秦晓凯, 韩强. 基于裂隙粗糙性表征方法的地热岩体热流耦合数值模拟与分析[J]. 化工学报, 2023, 74(S1): 223-234. |
[6] | 于宏鑫, 邵双全. 水结晶过程的分子动力学模拟分析[J]. 化工学报, 2023, 74(S1): 250-258. |
[7] | 杨欣, 王文, 徐凯, 马凡华. 高压氢气加注过程中温度特征仿真分析[J]. 化工学报, 2023, 74(S1): 280-286. |
[8] | 晁京伟, 许嘉兴, 李廷贤. 基于无管束蒸发换热强化策略的吸附热池的供热性能研究[J]. 化工学报, 2023, 74(S1): 302-310. |
[9] | 程成, 段钟弟, 孙浩然, 胡海涛, 薛鸿祥. 表面微结构对析晶沉积特性影响的格子Boltzmann模拟[J]. 化工学报, 2023, 74(S1): 74-86. |
[10] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[11] | 王玉兵, 李杰, 詹宏波, 朱光亚, 张大林. R134a在菱形离散肋微小通道内的流动沸腾换热实验研究[J]. 化工学报, 2023, 74(9): 3797-3806. |
[12] | 赵亚欣, 张雪芹, 王荣柱, 孙国, 姚善泾, 林东强. 流穿模式离子交换层析去除单抗聚集体[J]. 化工学报, 2023, 74(9): 3879-3887. |
[13] | 李科, 文键, 忻碧平. 耦合蒸气冷却屏的真空多层绝热结构对液氢储罐自增压过程的影响机制研究[J]. 化工学报, 2023, 74(9): 3786-3796. |
[14] | 何松, 刘乔迈, 谢广烁, 王斯民, 肖娟. 高浓度水煤浆管道气膜减阻两相流模拟及代理辅助优化[J]. 化工学报, 2023, 74(9): 3766-3774. |
[15] | 陈哲文, 魏俊杰, 张玉明. 超临界水煤气化耦合SOFC发电系统集成及其能量转化机制[J]. 化工学报, 2023, 74(9): 3888-3902. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||