化工学报 ›› 2021, Vol. 72 ›› Issue (10): 5142-5149.DOI: 10.11949/0438-1157.20210498
收稿日期:
2021-04-13
修回日期:
2021-06-24
出版日期:
2021-10-05
发布日期:
2021-10-05
通讯作者:
赵玉刚
作者简介:
黄承志(1992—),男,硕士研究生,基金资助:
Chengzhi HUANG1(),Haibo TANG1,Tian GU1,Yugang ZHAO1,2(
)
Received:
2021-04-13
Revised:
2021-06-24
Online:
2021-10-05
Published:
2021-10-05
Contact:
Yugang ZHAO
摘要:
探究静置液滴蒸发的动力学原理在众多的相关工业应用中举足轻重。在过去的数十年间,尽管相关领域的学者进行了大量的研究工作,但仍有一个关键的问题尚未解决,即液滴接触线附近的温度在蒸发过程中到底是如何变化的。通过直接测量的实验方法,报道了液滴在接触线固定不动的蒸发阶段,其接触线附近温度的详细变化过程。利用显微热敏荧光测温技术,其结果表明:液滴接触线附近自由界面的温度将沿径向发生急剧变化,并伴随一组在蒸发过程中不断发生演变的荧光同心圆环,这种荧光条纹带是由于液滴边缘的几何差异性所导致的局部强化蒸发冷却与一组热浮力驱动的对流辊相互作用产生的结果。本研究将为蒸发动力学提供新的认识,并有望在各种对传热系统的应用领域中促成新的进展。
中图分类号:
黄承志,汤海波,顾恬,赵玉刚. 热敏荧光法用于蒸发液滴近接触线的温度测量[J]. 化工学报, 2021, 72(10): 5142-5149.
Chengzhi HUANG,Haibo TANG,Tian GU,Yugang ZHAO. Characterizing the temperature profile near contact lines of an evaporating sessile drop[J]. CIESC Journal, 2021, 72(10): 5142-5149.
图1 用于观测蒸发液滴气-液界面温度分布的实验装置示意图
Fig.1 Schematics of the experiment setup used to probe the temperature profile at the water-gas interface of an evaporating drop
图2 加热静置液滴的蒸发动力学俯视图:相机在t = t0+ 148 s时刻拍摄到的整个液滴的画面(a);sCMOS相机在不同时刻拍摄到的图(a)虚线区域内的画面[(b)~(f)]
Fig.2 Evaporation dynamics of a heated sessile water drop from the top view: a fringe pattern of the whole drop captured at an instant (t = t0 + 148 s)(a); the captures in the selected region as highlighted in Fig.(a), illustrating the evolution of the fringe pattern[(b)—(f)]
图3 荧光强度与局部温度和荧光溶液浓度的关系 (图中的误差是通过五组独立的测量获得)
Fig.3 Charactering the dependence of fluorescence intensity on temperature and concentration of the fluorescence dye (errors obtained from 5 groups of individual measurement)
图4 蒸发过程中溶液浓度提高引起的荧光强度在液滴半径方向上的变化
Fig.4 The variation of fluorescence intensity along the radial direction caused by the global fluorescence concentration enrichment during evaporation
图6 蒸发动力学、冷却区(虚线圆圈内的黄色区域,Ⅰ型条纹)和冷却点(蓝色区域,Ⅱ型条纹)的形成示意图
Fig.6 Schematic of the evaporation dynamics and the formation of cooling region (yellow within the dashed circle, type I fringe), and cooling spots (blue, type Ⅱ fringe)
1 | Erbil H Y. Evaporation of pure liquid sessile and spherical suspended drops: a review[J]. Advances in Colloid and Interface Science, 2012, 170(1/2): 67-86. |
2 | Chen R H, Chow L C, Navedo J E. Effects of spray characteristics on critical heat flux in subcooled water spray cooling[J]. International Journal of Heat and Mass Transfer, 2002, 45(19): 4033-4043. |
3 | Zhao Y, Guo Q, Lin T, et al. A review of recent literature on icing phenomena: transport mechanisms, their modulations and controls[J]. International Journal of Heat and Mass Transfer, 2020, 159: 120074. |
4 | Wiedenheft K F, Guo H A, Qu X P, et al. Hotspot cooling with jumping-drop vapor chambers[J]. Applied Physics Letters, 2017, 110(14): 141601. |
5 | Deegan R D, Bakajin O, Dupont T F, et al. Capillary flow as the cause of ring stains from dried liquid drops[J]. Nature, 1997, 389(6653): 827-829. |
6 | Yunker P J, Still T, Lohr M A, et al. Suppression of the coffee-ring effect by shape-dependent capillary interactions[J]. Nature, 2011, 476(7360): 308-311. |
7 | Accardo A, Gentile F, Mecarini F, et al. In situ X-ray scattering studies of protein solution droplets drying on micro-and nanopatterned superhydrophobic PMMA surfaces[J]. Langmuir, 2010, 26(18): 15057-15064. |
8 | Jing J, Reed J, Huang J, et al. Automated high resolution optical mapping using arrayed, fluid-fixed DNA molecules[J]. PNAS, 1998, 95(14): 8046-8051. |
9 | Smalyukh I I, Zribi O V, Butler J C, et al. Structure and dynamics of liquid crystalline pattern formation in drying droplets of DNA[J]. Physical Review Letters, 2006, 96(17): 177801. |
10 | Goh G L, Saengchairat N, Agarwala S, et al. Sessile droplets containing carbon nanotubes: a study of evaporation dynamics and CNT alignment for printed electronics[J]. Nanoscale, 2019, 11(22): 10603-10614. |
11 | Kolegov K S, Barash L Y. Applying droplets and films in evaporative lithography[J]. Advances in Colloid and Interface Science, 2020, 285: 102271. |
12 | 骆骞, 毕勤成, 韩彦宁, 等. 盐水液滴降压环境下蒸发过程[J]. 化工学报, 2013, 64(6): 2001-2006. |
Luo Q, Bi Q C, Han Y N, et al. Evaporation process of brine droplet at reducing pressure[J]. CIESC Journal, 2013, 64(6): 2001-2006. | |
13 | 沈胜强, 周士鹤, 牟兴森, 等. 大型低温多效蒸发海水淡化装置传热过程热力损失分析[J]. 化工学报, 2014, 65(9): 3366-3374. |
Shen S Q, Zhou S H, Mu X S, et al. Analysis of thermodynamic losses of heat transfer process in large-scale LT-MED desalination plant[J]. CIESC Journal, 2014, 65(9): 3366-3374. | |
14 | Zang D Y, Tarafdar S, Tarasevich Y Y, et al. Evaporation of a droplet: from physics to applications[J]. Physics Reports, 2019, 804: 1-56. |
15 | Zhu J L, Shi W Y, Feng L. Bénard-Marangoni instability in sessile droplet evaporating at constant contact angle mode on heated substrate[J]. International Journal of Heat and Mass Transfer, 2019, 134: 784-795. |
16 | 陈宏霞, 肖红洋, 孙源, 等. 微柱表面液滴定壁温沸腾实验研究[J]. 化工学报, 2019, 70(9): 3363-3369. |
Chen H X, Xiao H Y, Sun Y, et al. Experimental study on droplets boiling on micro-pillar structure surface with constant temperatures[J]. CIESC Journal, 2019, 70(9): 3363-3369. | |
17 | 胡定华, 吴慧英, 吴信宇. 局部微型加热下液滴表面温度分布特性[J]. 化工学报, 2011, 62(11): 3039-3045. |
Hu D H, Wu H Y, Wu X Y. Surface temperature distribution of droplet heated by local microheater[J]. CIESC Journal, 2011, 62(11): 3039-3045. | |
18 | 高明, 孔鹏, 章立新. 恒热流条件下亲疏水表面液滴蒸发特性[J]. 化工学报, 2018, 69(7): 2979-2984. |
Gao M, Kong P, Zhang L X. Character of sessile droplets evaporation on hydrophilic and hydrophobic heating surface with constant heat fluxes[J]. CIESC Journal, 2018, 69(7): 2979-2984. | |
19 | Ristenpart W D, Kim P G, Domingues C, et al. Influence of substrate conductivity on circulation reversal in evaporating drops[J]. Physical Review Letters, 2007, 99(23): 234502. |
20 | Buffone C. Evaporating sessile drops subject to crosswind[J]. International Journal of Thermal Sciences, 2019, 144: 1-10. |
21 | Zhu G P, Wei T, Duan F. Hydrothermal waves[M]//Droplet Wetting and Evaporation. Amsterdam: Elsevier, 2015: 251-275. |
22 | Zhong X, Duan F. Stable hydrothermal waves at steady state evaporating droplet surface[J]. Scientific Reports, 2017, 7(1): 16219. |
23 | Persad A H, Ward C A. Expressions for the evaporation and condensation coefficients in the Hertz-Knudsen relation[J]. Chemical Reviews, 2016, 116(14): 7727-7767. |
24 | Herbaut R, Dervaux J, Brunet P, et al. A criterion for the pinning and depinning of an advancing contact line on a cold substrate[J]. The European Physical Journal Special Topics, 2020, 229(10): 1867-1880. |
25 | Sefiane K, Moffat J R, Matar O K, et al. Self-excited hydrothermal waves in evaporating sessile drops[J]. Applied Physics Letters, 2008, 93(7): 074103. |
26 | Karapetsas G, Matar O K, Valluri P, et al. Convective rolls and hydrothermal waves in evaporating sessile drops[J]. Langmuir, 2012, 28(31): 11433-11439. |
27 | Hu H, Larson R G. Evaporation of a sessile droplet on a substrate[J]. The Journal of Physical Chemistry B, 2002, 106(6): 1334-1344. |
28 | Deegan R D, Bakajin O, Dupont T F, et al. Contact line deposits in an evaporating drop[J]. Physical Review E, 2000, 62(1): 756-765. |
29 | Semenov S, Carle F, Medale M, et al. 3D unsteady computations of evaporative instabilities in a sessile drop of ethanol on a heated substrate[J]. Applied Physics Letters, 2017, 111(24): 241602. |
30 | Girard F, Antoni M, Sefiane K. Infrared thermography investigation of an evaporating sessile water droplet on heated substrates[J]. Langmuir, 2010, 26(7): 4576-4580. |
31 | Ward C A, Duan F. Turbulent transition of thermocapillary flow induced by water evaporation[J]. Physical Review E, 2004, 69(5): 056308. |
32 | Herbert S, Fischer S, Gambaryan-Roisman T, et al. Local heat transfer and phase change phenomena during single drop impingement on a hot surface[J]. International Journal of Heat and Mass Transfer, 2013, 61: 605-614. |
33 | Liang G T, Mudawar I. Review of drop impact on heated walls[J]. International Journal of Heat and Mass Transfer, 2017, 106: 103-126. |
34 | Semenov S, Carle F, Medale M, et al. Boundary conditions for a one-sided numerical model of evaporative instabilities in sessile drops of ethanol on heated substrates[J]. Physical Review E, 2017, 96(6-1): 063113. |
35 | Ye S, Zhang L, Wu C M, et al. Experimental investigation of evaporation dynamic of sessile droplets in pure vapor environment with low pressures[J]. International Journal of Thermal Sciences, 2020, 149: 106213. |
36 | Zhao Y G, Zhao C L, He J H, et al. Collective effects on thermophoresis of colloids: a microfluidic study within the framework of DLVO theory[J]. Soft Matter, 2013, 9(32): 7726. |
37 | Shah J J, Gaitan M, Geist J. Generalized temperature measurement equations for rhodamine B dye solution and its application to microfluidics[J]. Analytical Chemistry, 2009, 81(19): 8260-8263. |
38 | Diddens C, Kuerten J G M, van der Geld C W M, et al. Modeling the evaporation of sessile multi-component droplets[J]. Journal of Colloid and Interface Science, 2017, 487: 426-436. |
39 | Zhang K, Ma L R, Xu X F, et al. Temperature distribution along the surface of evaporating droplets[J]. Physical Review E, 2014, 89(3): 032404. |
40 | Bouchenna C, Ait Saada M, Chikh S, et al. Generalized formulation for evaporation rate and flow pattern prediction inside an evaporating pinned sessile drop[J]. International Journal of Heat and Mass Transfer, 2017, 109: 482-500. |
[1] | 晁京伟, 许嘉兴, 李廷贤. 基于无管束蒸发换热强化策略的吸附热池的供热性能研究[J]. 化工学报, 2023, 74(S1): 302-310. |
[2] | 程成, 段钟弟, 孙浩然, 胡海涛, 薛鸿祥. 表面微结构对析晶沉积特性影响的格子Boltzmann模拟[J]. 化工学报, 2023, 74(S1): 74-86. |
[3] | 张化福, 童莉葛, 张振涛, 杨俊玲, 王立, 张俊浩. 机械蒸汽压缩蒸发技术研究现状与发展趋势[J]. 化工学报, 2023, 74(S1): 8-24. |
[4] | 吴馨, 龚建英, 靳龙, 王宇涛, 黄睿宁. 超声波激励下铝板表面液滴群输运特性的研究[J]. 化工学报, 2023, 74(S1): 104-112. |
[5] | 叶展羽, 山訸, 徐震原. 用于太阳能蒸发的折纸式蒸发器性能仿真[J]. 化工学报, 2023, 74(S1): 132-140. |
[6] | 张双星, 刘舫辰, 张义飞, 杜文静. R-134a脉动热管相变蓄放热实验研究[J]. 化工学报, 2023, 74(S1): 165-171. |
[7] | 毕丽森, 刘斌, 胡恒祥, 曾涛, 李卓睿, 宋健飞, 吴翰铭. 粗糙界面上纳米液滴蒸发模式的分子动力学研究[J]. 化工学报, 2023, 74(S1): 172-178. |
[8] | 张义飞, 刘舫辰, 张双星, 杜文静. 超临界二氧化碳用印刷电路板式换热器性能分析[J]. 化工学报, 2023, 74(S1): 183-190. |
[9] | 陈爱强, 代艳奇, 刘悦, 刘斌, 吴翰铭. 基板温度对HFE7100液滴蒸发过程的影响研究[J]. 化工学报, 2023, 74(S1): 191-197. |
[10] | 刘明栖, 吴延鹏. 导光管直径和长度对传热影响的模拟分析[J]. 化工学报, 2023, 74(S1): 206-212. |
[11] | 王志国, 薛孟, 董芋双, 张田震, 秦晓凯, 韩强. 基于裂隙粗糙性表征方法的地热岩体热流耦合数值模拟与分析[J]. 化工学报, 2023, 74(S1): 223-234. |
[12] | 齐聪, 丁子, 余杰, 汤茂清, 梁林. 基于选择吸收纳米薄膜的太阳能温差发电特性研究[J]. 化工学报, 2023, 74(9): 3921-3930. |
[13] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[14] | 王玉兵, 李杰, 詹宏波, 朱光亚, 张大林. R134a在菱形离散肋微小通道内的流动沸腾换热实验研究[J]. 化工学报, 2023, 74(9): 3797-3806. |
[15] | 李科, 文键, 忻碧平. 耦合蒸气冷却屏的真空多层绝热结构对液氢储罐自增压过程的影响机制研究[J]. 化工学报, 2023, 74(9): 3786-3796. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 201
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 291
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||