1 |
Erbil H Y. Evaporation of pure liquid sessile and spherical suspended drops: a review[J]. Advances in Colloid and Interface Science, 2012, 170(1/2): 67-86.
|
2 |
Chen R H, Chow L C, Navedo J E. Effects of spray characteristics on critical heat flux in subcooled water spray cooling[J]. International Journal of Heat and Mass Transfer, 2002, 45(19): 4033-4043.
|
3 |
Zhao Y, Guo Q, Lin T, et al. A review of recent literature on icing phenomena: transport mechanisms, their modulations and controls[J]. International Journal of Heat and Mass Transfer, 2020, 159: 120074.
|
4 |
Wiedenheft K F, Guo H A, Qu X P, et al. Hotspot cooling with jumping-drop vapor chambers[J]. Applied Physics Letters, 2017, 110(14): 141601.
|
5 |
Deegan R D, Bakajin O, Dupont T F, et al. Capillary flow as the cause of ring stains from dried liquid drops[J]. Nature, 1997, 389(6653): 827-829.
|
6 |
Yunker P J, Still T, Lohr M A, et al. Suppression of the coffee-ring effect by shape-dependent capillary interactions[J]. Nature, 2011, 476(7360): 308-311.
|
7 |
Accardo A, Gentile F, Mecarini F, et al. In situ X-ray scattering studies of protein solution droplets drying on micro-and nanopatterned superhydrophobic PMMA surfaces[J]. Langmuir, 2010, 26(18): 15057-15064.
|
8 |
Jing J, Reed J, Huang J, et al. Automated high resolution optical mapping using arrayed, fluid-fixed DNA molecules[J]. PNAS, 1998, 95(14): 8046-8051.
|
9 |
Smalyukh I I, Zribi O V, Butler J C, et al. Structure and dynamics of liquid crystalline pattern formation in drying droplets of DNA[J]. Physical Review Letters, 2006, 96(17): 177801.
|
10 |
Goh G L, Saengchairat N, Agarwala S, et al. Sessile droplets containing carbon nanotubes: a study of evaporation dynamics and CNT alignment for printed electronics[J]. Nanoscale, 2019, 11(22): 10603-10614.
|
11 |
Kolegov K S, Barash L Y. Applying droplets and films in evaporative lithography[J]. Advances in Colloid and Interface Science, 2020, 285: 102271.
|
12 |
骆骞, 毕勤成, 韩彦宁, 等. 盐水液滴降压环境下蒸发过程[J]. 化工学报, 2013, 64(6): 2001-2006.
|
|
Luo Q, Bi Q C, Han Y N, et al. Evaporation process of brine droplet at reducing pressure[J]. CIESC Journal, 2013, 64(6): 2001-2006.
|
13 |
沈胜强, 周士鹤, 牟兴森, 等. 大型低温多效蒸发海水淡化装置传热过程热力损失分析[J]. 化工学报, 2014, 65(9): 3366-3374.
|
|
Shen S Q, Zhou S H, Mu X S, et al. Analysis of thermodynamic losses of heat transfer process in large-scale LT-MED desalination plant[J]. CIESC Journal, 2014, 65(9): 3366-3374.
|
14 |
Zang D Y, Tarafdar S, Tarasevich Y Y, et al. Evaporation of a droplet: from physics to applications[J]. Physics Reports, 2019, 804: 1-56.
|
15 |
Zhu J L, Shi W Y, Feng L. Bénard-Marangoni instability in sessile droplet evaporating at constant contact angle mode on heated substrate[J]. International Journal of Heat and Mass Transfer, 2019, 134: 784-795.
|
16 |
陈宏霞, 肖红洋, 孙源, 等. 微柱表面液滴定壁温沸腾实验研究[J]. 化工学报, 2019, 70(9): 3363-3369.
|
|
Chen H X, Xiao H Y, Sun Y, et al. Experimental study on droplets boiling on micro-pillar structure surface with constant temperatures[J]. CIESC Journal, 2019, 70(9): 3363-3369.
|
17 |
胡定华, 吴慧英, 吴信宇. 局部微型加热下液滴表面温度分布特性[J]. 化工学报, 2011, 62(11): 3039-3045.
|
|
Hu D H, Wu H Y, Wu X Y. Surface temperature distribution of droplet heated by local microheater[J]. CIESC Journal, 2011, 62(11): 3039-3045.
|
18 |
高明, 孔鹏, 章立新. 恒热流条件下亲疏水表面液滴蒸发特性[J]. 化工学报, 2018, 69(7): 2979-2984.
|
|
Gao M, Kong P, Zhang L X. Character of sessile droplets evaporation on hydrophilic and hydrophobic heating surface with constant heat fluxes[J]. CIESC Journal, 2018, 69(7): 2979-2984.
|
19 |
Ristenpart W D, Kim P G, Domingues C, et al. Influence of substrate conductivity on circulation reversal in evaporating drops[J]. Physical Review Letters, 2007, 99(23): 234502.
|
20 |
Buffone C. Evaporating sessile drops subject to crosswind[J]. International Journal of Thermal Sciences, 2019, 144: 1-10.
|
21 |
Zhu G P, Wei T, Duan F. Hydrothermal waves[M]//Droplet Wetting and Evaporation. Amsterdam: Elsevier, 2015: 251-275.
|
22 |
Zhong X, Duan F. Stable hydrothermal waves at steady state evaporating droplet surface[J]. Scientific Reports, 2017, 7(1): 16219.
|
23 |
Persad A H, Ward C A. Expressions for the evaporation and condensation coefficients in the Hertz-Knudsen relation[J]. Chemical Reviews, 2016, 116(14): 7727-7767.
|
24 |
Herbaut R, Dervaux J, Brunet P, et al. A criterion for the pinning and depinning of an advancing contact line on a cold substrate[J]. The European Physical Journal Special Topics, 2020, 229(10): 1867-1880.
|
25 |
Sefiane K, Moffat J R, Matar O K, et al. Self-excited hydrothermal waves in evaporating sessile drops[J]. Applied Physics Letters, 2008, 93(7): 074103.
|
26 |
Karapetsas G, Matar O K, Valluri P, et al. Convective rolls and hydrothermal waves in evaporating sessile drops[J]. Langmuir, 2012, 28(31): 11433-11439.
|
27 |
Hu H, Larson R G. Evaporation of a sessile droplet on a substrate[J]. The Journal of Physical Chemistry B, 2002, 106(6): 1334-1344.
|
28 |
Deegan R D, Bakajin O, Dupont T F, et al. Contact line deposits in an evaporating drop[J]. Physical Review E, 2000, 62(1): 756-765.
|
29 |
Semenov S, Carle F, Medale M, et al. 3D unsteady computations of evaporative instabilities in a sessile drop of ethanol on a heated substrate[J]. Applied Physics Letters, 2017, 111(24): 241602.
|
30 |
Girard F, Antoni M, Sefiane K. Infrared thermography investigation of an evaporating sessile water droplet on heated substrates[J]. Langmuir, 2010, 26(7): 4576-4580.
|
31 |
Ward C A, Duan F. Turbulent transition of thermocapillary flow induced by water evaporation[J]. Physical Review E, 2004, 69(5): 056308.
|
32 |
Herbert S, Fischer S, Gambaryan-Roisman T, et al. Local heat transfer and phase change phenomena during single drop impingement on a hot surface[J]. International Journal of Heat and Mass Transfer, 2013, 61: 605-614.
|
33 |
Liang G T, Mudawar I. Review of drop impact on heated walls[J]. International Journal of Heat and Mass Transfer, 2017, 106: 103-126.
|
34 |
Semenov S, Carle F, Medale M, et al. Boundary conditions for a one-sided numerical model of evaporative instabilities in sessile drops of ethanol on heated substrates[J]. Physical Review E, 2017, 96(6-1): 063113.
|
35 |
Ye S, Zhang L, Wu C M, et al. Experimental investigation of evaporation dynamic of sessile droplets in pure vapor environment with low pressures[J]. International Journal of Thermal Sciences, 2020, 149: 106213.
|
36 |
Zhao Y G, Zhao C L, He J H, et al. Collective effects on thermophoresis of colloids: a microfluidic study within the framework of DLVO theory[J]. Soft Matter, 2013, 9(32): 7726.
|
37 |
Shah J J, Gaitan M, Geist J. Generalized temperature measurement equations for rhodamine B dye solution and its application to microfluidics[J]. Analytical Chemistry, 2009, 81(19): 8260-8263.
|
38 |
Diddens C, Kuerten J G M, van der Geld C W M, et al. Modeling the evaporation of sessile multi-component droplets[J]. Journal of Colloid and Interface Science, 2017, 487: 426-436.
|
39 |
Zhang K, Ma L R, Xu X F, et al. Temperature distribution along the surface of evaporating droplets[J]. Physical Review E, 2014, 89(3): 032404.
|
40 |
Bouchenna C, Ait Saada M, Chikh S, et al. Generalized formulation for evaporation rate and flow pattern prediction inside an evaporating pinned sessile drop[J]. International Journal of Heat and Mass Transfer, 2017, 109: 482-500.
|