化工学报 ›› 2021, Vol. 72 ›› Issue (11): 5840-5848.DOI: 10.11949/0438-1157.20210698
谢震廷1(),王宏1,2(
),朱恂1,2,陈蓉1,2,丁玉栋1,2,廖强1,2
收稿日期:
2021-05-21
修回日期:
2021-08-01
出版日期:
2021-11-05
发布日期:
2021-11-12
通讯作者:
王宏
作者简介:
谢震廷(1995—),男,博士研究生,基金资助:
Zhenting XIE1(),Hong WANG1,2(
),Xun ZHU1,2,Rong CHEN1,2,Yudong DING1,2,Qiang LIAO1,2
Received:
2021-05-21
Revised:
2021-08-01
Online:
2021-11-05
Published:
2021-11-12
Contact:
Hong WANG
摘要:
户外设备表面结冰给人类生活和生产带来了众多不便,研究具有防结冰性能和除冰性能的新一代防、除冰材料对于户外设备的持久稳定运行具有重要意义。本文利用模板法将三氧化二钛(Ti2O3)粉末和聚二甲基硅氧烷(PDMS)混合制备具有规则阵列结构的光热超疏水材料,并研究其防结冰性能与光热除冰性能。得益于Ti2O3优异的光热性能,制备的材料在100 mW/cm2光照条件下的光热温升可达55℃,冻结在表面的液滴可在200 s内融化,具有优异的光热转换与光热除冰性能。而PDMS材料固化后本征疏水,加规则阵列微结构后赋予材料优异的超疏水性能,其接触角高达153°,滚动角小于5°。无光照时的结冰延迟时间长达1300 s,是无光热材料表面结冰延迟时间的3倍。而在光照时由于其优异的光热性能,液滴在长达6 h的结冰测试中尚未结冰,表明材料具有优异的光热防结冰性能。研究结果论证了利用自然界丰富太阳能进行除冰的可能性,为户外设备表面除冰技术提供新的方式。
中图分类号:
谢震廷, 王宏, 朱恂, 陈蓉, 丁玉栋, 廖强. 光热超疏水材料的制备与防、除冰性能研究[J]. 化工学报, 2021, 72(11): 5840-5848.
Zhenting XIE, Hong WANG, Xun ZHU, Rong CHEN, Yudong DING, Qiang LIAO. Preparation and anti-icing/deicing performance of photothermal superhydrophobic surfaces[J]. CIESC Journal, 2021, 72(11): 5840-5848.
样品 | 特性 | WCA/(°) | RA/(°) |
---|---|---|---|
普通超疏水表面 | 超疏水 | 153.12±1.96 | 4.65±1.50 |
光热超疏水表面 | 超疏水 | 153.79±1.29 | 4.44±1.25 |
表1 室温条件下不同样品的接触角和滚动角
Table 1 Water contact angle and roll angle on various samples at room temperature
样品 | 特性 | WCA/(°) | RA/(°) |
---|---|---|---|
普通超疏水表面 | 超疏水 | 153.12±1.96 | 4.65±1.50 |
光热超疏水表面 | 超疏水 | 153.79±1.29 | 4.44±1.25 |
图6 单液滴结冰过程中的光学照片(a) 普通超疏水表面无光照; (b) 光热超疏水表面无光照; (c) 普通超疏水表面有光照; (d) 光热超疏水表面有光照
Fig.6 Photography of water droplet during icing process(a) the SHS no light; (b) the PT@SHS no light; (c) the SHS in light; (d) the PT@SHS in light
1 | 熊萍. 2008雪灾报道: 三大亮点, 三大遗憾[J]. 中国广播, 2008(5): 39-40. |
Xiong P. 2008 snow disaster report: three highlights, three regrets[J]. China Broadcasts, 2008(5): 39-40. | |
2 | Farzaneh M, Ryerson C C. Anti-icing and deicing techniques[J]. Cold Regions Science and Technology, 2011, 65(1): 1-4. |
3 | Wang T, Zheng Y, Raji A R, et al. Passive anti-icing and active deicing films[J]. ACS Applied Materials & Interfaces, 2016, 8(22): 14169-14173. |
4 | Redondo O, Prolongo S G, Campo M, et al. Anti-icing and de-icing coatings based Joule's heating of graphene nanoplatelets[J]. Composites Science and Technology, 2018, 164: 65-73. |
5 | Cao L L, Jones A K, Sikka V K, et al. Anti-icing superhydrophobic coatings[J]. Langmuir, 2009, 25(21): 12444-12448. |
6 | Boinovich L B, Emelyanenko A M. Anti-icing potential of superhydrophobic coatings[J]. Mendeleev Communications, 2013, 23(1): 3-10. |
7 | 江雷, 冯琳. 仿生智能纳米界面材料[M]. 北京: 化学工业出版社, 2007. |
Jiang L, Feng L. Biomimetic Intelligent Nano-interface Materials [M]. Beijing: Chemical Industry Press, 2007. | |
8 | Li Q, Guo Z G. Fundamentals of icing and common strategies for designing biomimetic anti-icing surfaces[J]. Journal of Materials Chemistry A, 2018, 6(28): 13549-13581. |
9 | Liu Y Y, Song D, Choi C H. Anti- and de-icing behaviors of superhydrophobic fabrics[J]. Coatings, 2018, 8(6): 198. |
10 | Wei C Q, Jin B Y, Zhang Q H, et al. Anti-icing performance of super-wetting surfaces from icing-resistance to ice-phobic aspects: Robust hydrophobic or slippery surfaces[J]. Journal of Alloys and Compounds, 2018, 765: 721-730. |
11 | Li J, Zhou Y J, Wang W B, et al. Superhydrophobic copper surface textured by laser for delayed icing phenomenon[J]. Langmuir, 2020, 36(5): 1075-1082. |
12 | Jin M H, Feng X J, Xi J M, et al. Super-hydrophobic PDMS surface with ultra-low adhesive force[J]. Macromolecular Rapid Communications, 2005, 26(22): 1805-1809. |
13 | Bengaluru Subramanyam S, Kondrashov V, Rühe J, et al. Low ice adhesion on nano-textured superhydrophobic surfaces under supersaturated conditions[J]. ACS Applied Materials & Interfaces, 2016, 8(20): 12583-12587. |
14 | Shen Y Z, Wu X H, Tao J, et al. Icephobic materials: Fundamentals, performance evaluation, and applications[J]. Progress in Materials Science, 2019, 103: 509-557. |
15 | Varanasi K K, Deng T, Smith J D, et al. Frost formation and ice adhesion on superhydrophobic surfaces[J]. Applied Physics Letters, 2010, 97(23): 234102. |
16 | Chen J, Liu J, He M, et al. Superhydrophobic surfaces cannot reduce ice adhesion[J]. Applied Physics Letters, 2012, 101(11): 111603. |
17 | Chu F, Wen D, Wu X. Frost self-removal mechanism during defrosting on vertical superhydrophobic surfaces: peeling off or jumping off[J]. Langmuir, 2018, 34(48): 14562-14569. |
18 | Jamil M I, Zhan X, Chen F, et al. Durable and scalable candle soot icephobic coating with nucleation and fracture mechanism[J]. ACS Applied Materials & Interfaces, 2019, 11(34): 31532-31542. |
19 | Qi C H, Chen H, Shen L Y, et al. Superhydrophobic surface based on assembly of nanoparticles for application in anti-icing under ultralow temperature[J]. ACS Applied Nano Materials, 2020, 3(2): 2047-2057. |
20 | Hou W Q, Shen Y Z, Tao J, et al. Anti-icing performance of the superhydrophobic surface with micro-cubic array structures fabricated by plasma etching[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 586: 124180. |
21 | Chu F Q, Lin Y K, Yan X, et al. Quantitative relations between droplet jumping and anti-frosting effect on superhydrophobic surfaces[J]. Energy and Buildings, 2020, 225: 110315. |
22 | Yin X Y, Zhang Y, Wang D A, et al. Integration of self-lubrication and near-infrared photothermogenesis for excellent anti-icing/deicing performance[J]. Advanced Functional Materials, 2015, 25(27): 4237-4245. |
23 | Jiang G, Chen L, Zhang S, et al. Superhydrophobic SiC/CNTs coatings with photothermal deicing and passive anti-icing properties[J]. ACS Applied Materials & Interfaces, 2018, 10(42): 36505-36511. |
24 | Dash S, de Ruiter J, Varanasi K K. Photothermal trap utilizing solar illumination for ice mitigation[J]. Science Advances, 2018, 4(8): eaat0127. |
25 | Wang P, Yao T, Li Z Q, et al. A superhydrophobic/electrothermal synergistically anti-icing strategy based on graphene composite[J]. Composites Science and Technology, 2020, 198: 108307. |
26 | Guo H S, Liu M, Xie C H, et al. A sunlight-responsive and robust anti-icing/deicing coating based on the amphiphilic materials[J]. Chemical Engineering Journal, 2020, 402: 126161. |
27 | Wu C Y, Geng H Y, Tan S C, et al. Highly efficient solar anti-icing/deicing via a hierarchical structured surface[J]. Materials Horizons, 2020, 7(8): 2097-2104. |
28 | Wu S W, Du Y J, Alsaid Y, et al. Superhydrophobic photothermal icephobic surfaces based on candle soot[J]. PNAS, 2020, 117(21): 11240-11246. |
29 | Liu Y B, Wu Y, Liu Y Z, et al. Robust photothermal coating strategy for efficient ice removal[J]. ACS Applied Materials & Interfaces, 2020, 12(41): 46981-46990. |
30 | Wu B R, Cui X, Jiang H Y, et al. A superhydrophobic coating harvesting mechanical robustness, passive anti-icing and active de-icing performances[J]. Journal of Colloid and Interface Science, 2021, 590: 301-310. |
31 | Ma W, Li Y, Chao C Y H, et al. Solar-assisted icephobicity down to -60℃ with superhydrophobic selective surfaces[J]. Cell Reports Physical Science, 2021, 2(3): 100384. |
32 | Li W H, Lin C J, Ma W, et al. Transparent selective photothermal coatings for antifogging applications[J]. Cell Reports Physical Science, 2021, 2(5): 100435. |
33 | 向静, 王宏, 朱恂, 等. 荷叶表面的复刻及微纳结构对疏水性能的影响[J]. 化工学报, 2019, 70(9): 3545-3552. |
Xiang J, Wang H, Zhu X, et al. Fast replication method for lotus leaf and effect of micro-nanostructure on hydrophobic properties[J]. CIESC Journal, 2019, 70(9): 3545-3552. | |
34 | Xia Y N, Whitesides G M. Soft lithography[J]. Annual Review of Materials Science, 1998, 28(1): 153-184. |
35 | Wang J, Li Y Y, Deng L, et al. High-performance photothermal conversion of narrow-bandgap Ti2O3 nanoparticles[J]. Advanced Materials, 2017, 29(3): 1603730. |
36 | Cheng T T, He R, Zhang Q H, et al. Magnetic particle-based super-hydrophobic coatings with excellent anti-icing and thermoresponsive deicing performance[J]. Journal of Materials Chemistry A, 2015, 3(43): 21637-21646. |
37 | 向静. 荷叶仿生表面制备及其防结冰性能研究[D]. 重庆: 重庆大学, 2019. |
Xiang J. Fabrication of bionic lotus leaf surfaces and study on its anti-icing performance[D]. Chongqing: Chongqing University, 2019. |
[1] | 吴馨, 龚建英, 靳龙, 王宇涛, 黄睿宁. 超声波激励下铝板表面液滴群输运特性的研究[J]. 化工学报, 2023, 74(S1): 104-112. |
[2] | 苏伟, 马东旭, 金旭, 刘忠彦, 张小松. 表面润湿性对霜层传递特性影响可视化实验研究[J]. 化工学报, 2023, 74(S1): 122-131. |
[3] | 叶展羽, 山訸, 徐震原. 用于太阳能蒸发的折纸式蒸发器性能仿真[J]. 化工学报, 2023, 74(S1): 132-140. |
[4] | 齐聪, 丁子, 余杰, 汤茂清, 梁林. 基于选择吸收纳米薄膜的太阳能温差发电特性研究[J]. 化工学报, 2023, 74(9): 3921-3930. |
[5] | 杨越, 张丹, 郑巨淦, 涂茂萍, 杨庆忠. NaCl水溶液喷射闪蒸-掺混蒸发的实验研究[J]. 化工学报, 2023, 74(8): 3279-3291. |
[6] | 傅予, 刘兴翀, 王瀚雨, 李海敏, 倪亚飞, 邹文静, 雷月, 彭永姗. F3EACl修饰层对钙钛矿太阳能电池性能提升的研究[J]. 化工学报, 2023, 74(8): 3554-3563. |
[7] | 陈天华, 刘兆轩, 韩群, 张程宾, 李文明. 喷雾冷却换热强化研究进展及影响因素[J]. 化工学报, 2023, 74(8): 3149-3170. |
[8] | 杨欣, 彭啸, 薛凯茹, 苏梦威, 吴燕. 分子印迹-TiO2光电催化降解增溶PHE废水性能研究[J]. 化工学报, 2023, 74(8): 3564-3571. |
[9] | 吴文涛, 褚良永, 张玲洁, 谭伟民, 沈丽明, 暴宁钟. 腰果酚生物基自愈合微胶囊的高效制备工艺研究[J]. 化工学报, 2023, 74(7): 3103-3115. |
[10] | 王志龙, 杨烨, 赵真真, 田涛, 赵桐, 崔亚辉. 搅拌时间和混合顺序对锂离子电池正极浆料分散特性的影响[J]. 化工学报, 2023, 74(7): 3127-3138. |
[11] | 朱风, 陈凯琳, 黄小凤, 鲍银珠, 李文斌, 刘嘉鑫, 吴玮强, 高王伟. KOH改性电石渣脱除羰基硫的性能研究[J]. 化工学报, 2023, 74(6): 2668-2679. |
[12] | 王新悦, 王俊杰, 曹思贤, 王翠, 李灵坤, 吴宏宇, 韩静, 吴昊. 玻璃内包材界面修饰对机械应力诱导的单克隆抗体聚集体形成的影响[J]. 化工学报, 2023, 74(6): 2580-2588. |
[13] | 徐文超, 孙志高, 李翠敏, 李娟, 黄海峰. 静态条件下表面活性剂E-1310对HCFC-141b水合物生成的影响[J]. 化工学报, 2023, 74(5): 2179-2185. |
[14] | 葛运通, 王玮, 李楷, 肖帆, 于志鹏, 宫敬. 多相分散体系中微油滴与改性二氧化硅表面间作用力的AFM研究[J]. 化工学报, 2023, 74(4): 1651-1659. |
[15] | 张生安, 刘桂莲. 高效太阳能电解水制氢系统及其性能的多目标优化[J]. 化工学报, 2023, 74(3): 1260-1274. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 859
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 861
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||