1 |
熊萍. 2008雪灾报道: 三大亮点, 三大遗憾[J]. 中国广播, 2008(5): 39-40.
|
|
Xiong P. 2008 snow disaster report: three highlights, three regrets[J]. China Broadcasts, 2008(5): 39-40.
|
2 |
Farzaneh M, Ryerson C C. Anti-icing and deicing techniques[J]. Cold Regions Science and Technology, 2011, 65(1): 1-4.
|
3 |
Wang T, Zheng Y, Raji A R, et al. Passive anti-icing and active deicing films[J]. ACS Applied Materials & Interfaces, 2016, 8(22): 14169-14173.
|
4 |
Redondo O, Prolongo S G, Campo M, et al. Anti-icing and de-icing coatings based Joule's heating of graphene nanoplatelets[J]. Composites Science and Technology, 2018, 164: 65-73.
|
5 |
Cao L L, Jones A K, Sikka V K, et al. Anti-icing superhydrophobic coatings[J]. Langmuir, 2009, 25(21): 12444-12448.
|
6 |
Boinovich L B, Emelyanenko A M. Anti-icing potential of superhydrophobic coatings[J]. Mendeleev Communications, 2013, 23(1): 3-10.
|
7 |
江雷, 冯琳. 仿生智能纳米界面材料[M]. 北京: 化学工业出版社, 2007.
|
|
Jiang L, Feng L. Biomimetic Intelligent Nano-interface Materials [M]. Beijing: Chemical Industry Press, 2007.
|
8 |
Li Q, Guo Z G. Fundamentals of icing and common strategies for designing biomimetic anti-icing surfaces[J]. Journal of Materials Chemistry A, 2018, 6(28): 13549-13581.
|
9 |
Liu Y Y, Song D, Choi C H. Anti- and de-icing behaviors of superhydrophobic fabrics[J]. Coatings, 2018, 8(6): 198.
|
10 |
Wei C Q, Jin B Y, Zhang Q H, et al. Anti-icing performance of super-wetting surfaces from icing-resistance to ice-phobic aspects: Robust hydrophobic or slippery surfaces[J]. Journal of Alloys and Compounds, 2018, 765: 721-730.
|
11 |
Li J, Zhou Y J, Wang W B, et al. Superhydrophobic copper surface textured by laser for delayed icing phenomenon[J]. Langmuir, 2020, 36(5): 1075-1082.
|
12 |
Jin M H, Feng X J, Xi J M, et al. Super-hydrophobic PDMS surface with ultra-low adhesive force[J]. Macromolecular Rapid Communications, 2005, 26(22): 1805-1809.
|
13 |
Bengaluru Subramanyam S, Kondrashov V, Rühe J, et al. Low ice adhesion on nano-textured superhydrophobic surfaces under supersaturated conditions[J]. ACS Applied Materials & Interfaces, 2016, 8(20): 12583-12587.
|
14 |
Shen Y Z, Wu X H, Tao J, et al. Icephobic materials: Fundamentals, performance evaluation, and applications[J]. Progress in Materials Science, 2019, 103: 509-557.
|
15 |
Varanasi K K, Deng T, Smith J D, et al. Frost formation and ice adhesion on superhydrophobic surfaces[J]. Applied Physics Letters, 2010, 97(23): 234102.
|
16 |
Chen J, Liu J, He M, et al. Superhydrophobic surfaces cannot reduce ice adhesion[J]. Applied Physics Letters, 2012, 101(11): 111603.
|
17 |
Chu F, Wen D, Wu X. Frost self-removal mechanism during defrosting on vertical superhydrophobic surfaces: peeling off or jumping off[J]. Langmuir, 2018, 34(48): 14562-14569.
|
18 |
Jamil M I, Zhan X, Chen F, et al. Durable and scalable candle soot icephobic coating with nucleation and fracture mechanism[J]. ACS Applied Materials & Interfaces, 2019, 11(34): 31532-31542.
|
19 |
Qi C H, Chen H, Shen L Y, et al. Superhydrophobic surface based on assembly of nanoparticles for application in anti-icing under ultralow temperature[J]. ACS Applied Nano Materials, 2020, 3(2): 2047-2057.
|
20 |
Hou W Q, Shen Y Z, Tao J, et al. Anti-icing performance of the superhydrophobic surface with micro-cubic array structures fabricated by plasma etching[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 586: 124180.
|
21 |
Chu F Q, Lin Y K, Yan X, et al. Quantitative relations between droplet jumping and anti-frosting effect on superhydrophobic surfaces[J]. Energy and Buildings, 2020, 225: 110315.
|
22 |
Yin X Y, Zhang Y, Wang D A, et al. Integration of self-lubrication and near-infrared photothermogenesis for excellent anti-icing/deicing performance[J]. Advanced Functional Materials, 2015, 25(27): 4237-4245.
|
23 |
Jiang G, Chen L, Zhang S, et al. Superhydrophobic SiC/CNTs coatings with photothermal deicing and passive anti-icing properties[J]. ACS Applied Materials & Interfaces, 2018, 10(42): 36505-36511.
|
24 |
Dash S, de Ruiter J, Varanasi K K. Photothermal trap utilizing solar illumination for ice mitigation[J]. Science Advances, 2018, 4(8): eaat0127.
|
25 |
Wang P, Yao T, Li Z Q, et al. A superhydrophobic/electrothermal synergistically anti-icing strategy based on graphene composite[J]. Composites Science and Technology, 2020, 198: 108307.
|
26 |
Guo H S, Liu M, Xie C H, et al. A sunlight-responsive and robust anti-icing/deicing coating based on the amphiphilic materials[J]. Chemical Engineering Journal, 2020, 402: 126161.
|
27 |
Wu C Y, Geng H Y, Tan S C, et al. Highly efficient solar anti-icing/deicing via a hierarchical structured surface[J]. Materials Horizons, 2020, 7(8): 2097-2104.
|
28 |
Wu S W, Du Y J, Alsaid Y, et al. Superhydrophobic photothermal icephobic surfaces based on candle soot[J]. PNAS, 2020, 117(21): 11240-11246.
|
29 |
Liu Y B, Wu Y, Liu Y Z, et al. Robust photothermal coating strategy for efficient ice removal[J]. ACS Applied Materials & Interfaces, 2020, 12(41): 46981-46990.
|
30 |
Wu B R, Cui X, Jiang H Y, et al. A superhydrophobic coating harvesting mechanical robustness, passive anti-icing and active de-icing performances[J]. Journal of Colloid and Interface Science, 2021, 590: 301-310.
|
31 |
Ma W, Li Y, Chao C Y H, et al. Solar-assisted icephobicity down to -60℃ with superhydrophobic selective surfaces[J]. Cell Reports Physical Science, 2021, 2(3): 100384.
|
32 |
Li W H, Lin C J, Ma W, et al. Transparent selective photothermal coatings for antifogging applications[J]. Cell Reports Physical Science, 2021, 2(5): 100435.
|
33 |
向静, 王宏, 朱恂, 等. 荷叶表面的复刻及微纳结构对疏水性能的影响[J]. 化工学报, 2019, 70(9): 3545-3552.
|
|
Xiang J, Wang H, Zhu X, et al. Fast replication method for lotus leaf and effect of micro-nanostructure on hydrophobic properties[J]. CIESC Journal, 2019, 70(9): 3545-3552.
|
34 |
Xia Y N, Whitesides G M. Soft lithography[J]. Annual Review of Materials Science, 1998, 28(1): 153-184.
|
35 |
Wang J, Li Y Y, Deng L, et al. High-performance photothermal conversion of narrow-bandgap Ti2O3 nanoparticles[J]. Advanced Materials, 2017, 29(3): 1603730.
|
36 |
Cheng T T, He R, Zhang Q H, et al. Magnetic particle-based super-hydrophobic coatings with excellent anti-icing and thermoresponsive deicing performance[J]. Journal of Materials Chemistry A, 2015, 3(43): 21637-21646.
|
37 |
向静. 荷叶仿生表面制备及其防结冰性能研究[D]. 重庆: 重庆大学, 2019.
|
|
Xiang J. Fabrication of bionic lotus leaf surfaces and study on its anti-icing performance[D]. Chongqing: Chongqing University, 2019.
|