化工学报 ›› 2021, Vol. 72 ›› Issue (12): 6262-6273.doi: 10.11949/0438-1157.20211258

• 催化、动力学与反应器 • 上一篇    下一篇

基于机器学习的二氧化碳电化学还原制备甲酸盐研究

刘文萱(),张嘉毅,陆奇,张皓晨()   

  1. 清华大学化学工程系,化学工程联合国家重点实验室,北京 100084
  • 收稿日期:2021-08-31 修回日期:2021-10-28 出版日期:2021-12-05 发布日期:2021-12-22
  • 通讯作者: 张皓晨 E-mail:liuwx21@mails.tsinghua.edu.cn;zhc17@mails.tsinghua.edu.cn
  • 作者简介:刘文萱(1999—),女,博士研究生,liuwx21@mails.tsinghua.edu.cn
  • 基金资助:
    国家重点研发计划项目(2017YFB0702800)

Investigation of electroreduction of carbon dioxide into formate based on machine learning

Wenxuan LIU(),Jiayi ZHANG,Qi LU,Haochen ZHANG()   

  1. Department of Chemical Engineering, State Key Laboratory of Chemical Engineering, Tsinghua University, Beijing 100084, China
  • Received:2021-08-31 Revised:2021-10-28 Published:2021-12-05 Online:2021-12-22
  • Contact: Haochen ZHANG E-mail:liuwx21@mails.tsinghua.edu.cn;zhc17@mails.tsinghua.edu.cn

摘要:

系统研究了不同双金属中心催化剂催化二氧化碳电化学还原制备甲酸盐。借助机器学习,确定了反应中心金属原子序数、电负性和电离能等特征对双金属中心催化剂表面二氧化碳还原具有主要的影响。基于这些特征,通过高通量机器学习快速预测了105种双金属中心催化剂二氧化碳电还原制甲酸盐及其主要竞争反应的Gibbs自由能变,筛选出29种双金属中心催化剂更倾向于二氧化碳还原得到甲酸盐,是潜在的转化二氧化碳为甲酸盐的高性能催化材料。运用类似的方法预测了105种双金属中心催化剂表面二氧化碳还原中间体的结构,发现中间体吸附能与其吸附构型具有显著的相关关系。

关键词: 二氧化碳, 电化学, 催化剂, DFT计算, 机器学习

Abstract:

Electrocatalytic reduction of carbon dioxide to high value-added chemical products has provided a new route to alleviate greenhouse effect and other global problems, attracting intensive attention from both industry and academia. However, it still remains a great challenge to develop electrocatalysts with high performance for practical applications. As one of the major products from carbon dioxide electroreduction, formate is of key importance due to its stability, portability, and high volumetric energy density. In this work, we systematically studied the performance of electrochemical reduction of carbon dioxide to formate on various dual-metal-site catalysts using machine learning in conjunction with density functional theory (DFT) calculations. It was determined that the atomic number, electronegativity and ionization energy of metal atoms in the reaction center are major factors influencing the adsorption of formate intermediates over dual-metal-site catalysts. Based on these features, we predicted the adsorption free energy change for the electroreduction of carbon dioxide to formate and its main competitive reaction, hydrogen evolution reaction. 29 out of 105 dual-metal-site catalysts were identified as potential catalysts for formate production from carbon dioxide electroreduction. A similar method was used to predict the structure of the carbon dioxide reduction intermediates on the surface of 105 dual-metal-site catalysts, and it was found that the adsorption energy of the intermediates has a significant correlation with their adsorption configuration.

Key words: carbon dioxide, electrochemistry, catalyst, DFT calculation, machine learning

中图分类号: 

  • O 646.51

图1

石墨烯-N6-M1-M2双金属中心催化剂模型[灰色球为碳原子,淡蓝色球为氮原子,深蓝色球为金属原子(M1和M2)]"

图2

CO2ER和HER关键反应中间体的不同吸附构型[灰色球为碳原子,淡蓝色球为氮原子,白色球为氢原子,红色球为氧原子,深蓝色球为金属原子(M1和M2)]"

表1

随机抽取的23种DMSCs的ΔG*H、ΔG*HCOO和*HCOO吸附构型"

序号M1M2*HCOO吸附构型ΔG*H/eVΔG*HCOO/eV
1CuNiM1-*HCOO-M2双配位型0.430.89
2CoPdM-*HCOO单配位扭曲型-0.760.26
3RhIrM-*HCOO单配位扭曲型-0.500.51
4RhPtM-*HCOO单配位扭曲型-0.610.54
5IrCrM-*HCOO单配位型-0.32-0.43
6IrMnM-*HCOO单配位型-0.320.00
7ZnFeM1-*HCOO-M2双配位型-0.45-0.85
8RuFeM1-*HCOO-M2双配位型-0.050.12
9CrCoM1-*HCOO-M2双配位型-0.29-0.48
10MnAgM-*HCOO单配位型-0.66-0.62
11AgCoM1-*HCOO-M2双配位型0.080.27
12CrPdM-*HCOO单配位型-0.43-0.77
13NiPtM-*HCOO单配位扭曲型-0.341.31
14AgAuM-*HCOO单配位型-0.240.92
15MnPtM-*HCOO单配位型-0.61-0.53
16ZnNiM1-*HCOO-M2双配位型-0.31-0.25
17RuCuM1-*HCOO-M2双配位型-0.68-0.13
18CuAgM1-*HCOO-M2双配位型0.130.13
19NiCoM1-*HCOO-M2双配位型-0.590.53
20RuCoM1-*HCOO-M2双配位型-0.240.34
21CrMnM1-*HCOO-M2双配位型-0.18-1.21
22RhAgM-*HCOO单配位型-0.020.96
23PdZnM-*HCOO单配位型-0.72-0.38

表2

机器学习的完整52个特征"

特征定义特征定义
Z1Z2M1和M2的原子序数(Z1+Z2)/2平均原子序数
N1N2M1和M2的价电子数(N1+N2)/2平均价电子数
PE1PE2M1和M2的电负性[34](PE1+PE2)/2平均电负性
IE1IE2M1和M2的第一电离能[34](IE1+IE2)/2平均第一电离能
EA1EA2M1和M2的电子亲和能[35](EA1+EA2)/2平均电子亲和能
Nd1Nd2M1和M2的d电子数(Nd1+Nd2)/2平均d电子数
WF1WF2M1和M2的功函数[34](WF1+WF2)/2平均功函数
r1r2M1和M2的原子半径[34](r1+r2)/2平均原子半径
R1R2M1和M2的范德华半径[36](R1+R2)/2平均范德华半径
IE1/Nd1IE2/Nd2第一电离能除以d电子数[(Z1+Z2)/2]2平均原子序数的平方值
EA1/Nd1EA2/Nd2电子亲和能除以d电子数[(N1+N2)/2]2平均价电子数的平方值
PE1/Nd1PE2/Nd2电负性除以d电子数[(PE1+PE2)/2]2平均电负性的平方值
PE1×Nd1PE2×Nd2电负性与d电子数之积[(IE1+IE2)/2]2平均第一电离能的平方值
PE1+PE2PE1-PE2电负性之和、电负性之差[(EA1+EA2)/2]2平均电子亲和能的平方值
r1+r2原子半径之和[(Nd1+Nd2)/2]2平均d电子数的平方值
R1+R2范德华半径之和[(WF1+WF2)/2]2平均功函数的平方值
WF1/Nd1WF2/Nd2功函数除以d电子数[(r1+r2)/2]2平均原子半径的平方值
WF1+WF2、WF1-WF2功函数之和、功函数之差[(R1+R2)/2]2平均范德华半径的平方值

图3

ΔG*HCOO的特征筛选研究"

图4

8种算法对ΔG*HCOO预测结果的对比"

图5

8种算法预测*HCOO吸附构型的准确率"

图6

ΔG*HCOO的7个特征在训练集和全数据集下的归一化相对数值的出现频率分布情况"

图7

机器学习对ΔG*HCOO的预测结果"

图8

机器学习对ΔG*H的预测结果"

图9

机器学习对ΔG*HCOO-ΔG*H的预测结果"

图10

机器学习对*HCOO吸附构型的预测结果"

1 Herron J A, Kim J, Upadhye A A, et al. A general framework for the assessment of solar fuel technologies[J]. Energy & Environmental Science, 2015, 8(1): 126-157.
2 Davis S J, Caldeira K, Matthews H D. Future CO2 emissions and climate change from existing energy infrastructure[J]. Science, 2010, 329(5997): 1330-1333.
3 Wu J H, Huang Y, Ye W, et al. CO2 reduction: from the electrochemical to photochemical approach[J]. Advanced Science, 2017, 4(11): 1700194.
4 Bonetto R, Crisanti F, Sartorel A. Carbon dioxide reduction mediated by iron catalysts: mechanism and intermediates that guide selectivity[J]. ACS Omega, 2020, 5(34): 21309-21319.
5 Li F W, Chen L, Xue M Q, et al. Towards a better Sn: efficient electrocatalytic reduction of CO2 to formate by Sn/SnS2 derived from SnS2 nanosheets[J]. Nano Energy, 2017, 31: 270-277.
6 Chen C, Khosrowabadi Kotyk J F, Sheehan S W. Progress toward commercial application of electrochemical carbon dioxide reduction[J]. Chem, 2018, 4(11): 2571-2586.
7 Lu Q, Jiao F. Electrochemical CO2 reduction: electrocatalyst, reaction mechanism, and process engineering[J]. Nano Energy, 2016, 29: 439-456.
8 Hui S R, Shaigan N M, Neburchilov V, et al. Three-dimensional cathodes for electrochemical reduction of CO2: from macro-to nano-engineering[J]. Nanomaterials, 2020, 10(9): 1884.
9 Gao W L, Liang S Y, Wang R J, et al. Industrial carbon dioxide capture and utilization: state of the art and future challenges[J]. Chemical Society Reviews, 2020, 49(23): 8584-8686.
10 Yang M R, Li H J, Luo N D, et al. Electro-chemical reduction of carbon dioxide into ethylene: catalyst, conditions and mechanism[J]. Progress in Chemistry, 2019, 31(2/3): 245-257.
11 Chen S H, Su Y Q, Deng P L, et al. Highly selective carbon dioxide electroreduction on structure-evolved copper perovskite oxide toward methane production[J]. ACS Catalysis, 2020, 10(8): 4640-4646.
12 Yu J L, Liu H Y, Song S Q, et al. Electrochemical reduction of carbon dioxide at nanostructured SnO2/carbon aerogels: the effect of tin oxide content on the catalytic activity and formate selectivity[J]. Applied Catalysis A: General, 2017, 545: 159-166.
13 Agarwal A S, Zhai Y M, Hill D, et al. The electrochemical reduction of carbon dioxide to formate/formic acid: engineering and economic feasibility[J]. ChemSusChem, 2011, 4(9): 1301-1310.
14 Loges B, Boddien A, Gärtner F, et al. Catalytic generation of hydrogen from formic acid and its derivatives: useful hydrogen storage materials[J]. Topics in Catalysis, 2010, 53(13/14): 902-914.
15 Li J, Jiao J Q, Zhang H C, et al. Two-dimensional SnO2 nanosheets for efficient carbon dioxide electroreduction to formate[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(12): 4975-4982.
16 Mou K W, Chen Z P, Yao S Y, et al. Enhanced electrochemical reduction of carbon dioxide to formate with in situ grown indium-based catalysts in an aqueous electrolyte[J]. Electrochimica Acta, 2018, 289: 65-71.
17 Fu Y S, Li Y N, Zhang X, et al. Novel hierarchical SnO2 microsphere catalyst coated on gas diffusion electrode for enhancing energy efficiency of CO2 reduction to formate fuel[J]. Applied Energy, 2016, 175: 536-544.
18 Chen Y H, Kanan M W. Tin oxide dependence of the CO2 reduction efficiency on tin electrodes and enhanced activity for tin/tin oxide thin-film catalysts[J]. Journal of the American Chemical Society, 2012, 134(4): 1986-1989.
19 Pander J E III, Baruch M F, Bocarsly A B. Probing the mechanism of aqueous CO2 reduction on post-transition-metal electrodes using ATR-IR spectroelectrochemistry[J]. ACS Catalysis, 2016, 6(11): 7824-7833.
20 Zhu X R, Yan J X, Gu M, et al. Activity origin and design principles for oxygen reduction on dual-metal-site catalysts: a combined density functional theory and machine learning study[J]. The Journal of Physical Chemistry Letters, 2019, 10(24): 7760-7766.
21 He Q, Yu B, Li Z H, et al. Density functional theory for battery materials[J]. Energy & Environmental Materials, 2019, 2(4): 264-279.
22 Li M R, Garg S, Chang X X, et al. Toward excellence of transition metal-based catalysts for CO2 electrochemical reduction: an overview of strategies and rationales[J]. Small Methods, 2020, 4(7): 2000033.
23 Yang Z, Gao W, Jiang Q. A machine learning scheme for the catalytic activity of alloys with intrinsic descriptors[J]. Journal of Materials Chemistry A, 2020, 8(34): 17507-17515.
24 Chen Y, Huang Y, Cheng T, et al. Identifying active sites for CO2 reduction on dealloyed gold surfaces by combining machine learning with multiscale simulations[J]. Journal of the American Chemical Society, 2019, 141(29): 11651-11657.
25 Zhong M, Tran K, Min Y, et al. Accelerated discovery of CO2 electrocatalysts using active machine learning[J]. Nature, 2020, 581(7807): 178-183.
26 Ma X, Li Z, Achenie L E, et al. Machine-learning-augmented chemisorption model for CO2 electroreduction catalyst screening[J]. The Journal of Physical Chemistry Letters, 2015, 6(18): 3528-3533.
27 Mayer F D, Hosseini-Benhangi P, Sánchez-Sánchez C M, et al. Scanning electrochemical microscopy screening of CO2 electroreduction activities and product selectivities of catalyst arrays[J]. Communications Chemistry, 2020, 3: 155.
28 Wu D H, Zhang J Y, Cheng M J, et al. Machine learning investigation of supplementary adsorbate influence on copper for enhanced electrochemical CO2 reduction performance[J]. The Journal of Physical Chemistry C, 2021, 125(28): 15363-15372.
29 Zhang H C, Goddard W A, Lu Q, et al. The importance of grand-canonical quantum mechanical methods to describe the effect of electrode potential on the stability of intermediates involved in both electrochemical CO2 reduction and hydrogen evolution[J]. Physical Chemistry Chemical Physics, 2018, 20(4): 2549-2557.
30 Ma W C, Xie S J, Zhang X G, et al. Promoting electrocatalytic CO2 reduction to formate via sulfur-boosting water activation on indium surfaces[J]. Nature Communications, 2019, 10: 892.
31 Hastie T, Tibshirani R, Friedman J H, et al. The elements of statistical learning: data mining, inference, and prediction[J]. The Mathematical Intelligencer, 2004, 27(2): 83-85.
32 Friedman J H. Greedy function approximation: a gradient boosting machine[J]. The Annals of Statistics, 2001, 29(5): 1189-1232.
33 Kim J, Jung H, Jung S M, et al. Tailoring binding abilities by incorporating oxophilic transition metals on 3D nanostructured Ni arrays for accelerated alkaline hydrogen evolution reaction[J]. Journal of the American Chemical Society, 2021, 143(3): 1399-1408.
34 Speight J G. Lange's Handbook of Chemistry[M]. New York: McGraw-Hill, 2005: 1.132-1.156.
35 喻典, 梁国明. 元素电子亲和势的密度泛函理论计算[J]. 重庆师范大学学报(自然科学版), 2005, 22(1): 39-42.
Yu D, Liang G M. A study of electron affinities of the elements by density functional theory[J]. Journal of Chongqing Teachers College (Natural Science Edition), 2005, 22(1): 39-42.
36 Alvarez S. A cartography of the van der Waals territories[J]. Dalton Transactions, 2013, 42(24): 8617.
[1] 李彬, 宋文明, 杨坤龙, 姜爽, 张天永. 水系有机液流电池活性材料的分子工程研究进展[J]. 化工学报, 2022, 73(7): 2806-2818.
[2] 欧阳萍, 张睿, 周剑, 刘海燕, 刘植昌, 徐春明, 孟祥海. 铜铝双金属复合离子液体的电化学行为及电沉积铜机理[J]. 化工学报, 2022, 73(7): 3212-3221.
[3] 张劢, 田瑶, 郭之旗, 王叶, 窦广进, 宋浩. 光催化-生物杂合系统设计优化用于燃料和化学品绿色合成[J]. 化工学报, 2022, 73(7): 2774-2789.
[4] 李亚飞, 邓建强, 何阳. 跨临界CO2快速膨胀过程中非平衡冷凝和闪蒸机理的数值研究[J]. 化工学报, 2022, 73(7): 2912-2923.
[5] 苏晨昱, 杨颖, 宋兴福. 岩盐矿提钾老卤中溴离子选择性电氧化过程研究[J]. 化工学报, 2022, 73(7): 3007-3017.
[6] 朱江伟, 马鹏飞, 杜晓, 杨言言, 郝晓刚, 罗善霞. 基于可变价NiFe-LDH/rGO对磷酸根离子的特异性电控分离[J]. 化工学报, 2022, 73(7): 3057-3067.
[7] 张文静, 李静, 魏子栋. 介尺度视角下的电催化:从界面、隔膜到多孔电极[J]. 化工学报, 2022, 73(6): 2289-2305.
[8] 陆勇, 刘对平, 李晨阳, 周吉彬, 叶茂. 光纤内窥图像法测量MTO催化剂表观形貌及其积炭量的实验研究[J]. 化工学报, 2022, 73(6): 2662-2668.
[9] 孟博, 刘艳萍, 蒋新科, 韩一帆. Fe5C2-MnO x 尺度调控及催化合成气制烯烃性能研究[J]. 化工学报, 2022, 73(6): 2677-2689.
[10] 王婵, 肖国锡, 郭小雪, 徐人威, 岳源源, 鲍晓军. 基于介尺度结构解聚-重组装的Beta分子筛的绿色合成及应用[J]. 化工学报, 2022, 73(6): 2690-2697.
[11] 李淼, 赵虹, 姜标, 陈思远, 闫龙. 煤制乙炔关键中间体BaC2合成的热力学分析[J]. 化工学报, 2022, 73(5): 1908-1919.
[12] 付雪, 陈婷婷, 陈婷婷, 许映杰. 离子液体的电导性质研究进展[J]. 化工学报, 2022, 73(5): 1883-1893.
[13] 赵娟, 吴梦成, 雷惊雷, 李凌杰. 一步水热法制备电解水析氧反应Ni3S2@Mo2S3高效催化剂[J]. 化工学报, 2022, 73(4): 1575-1584.
[14] 孟文亮, 李贵贤, 周怀荣, 李婧玮, 王健, 王可, 范学英, 王东亮. 绿氢重构的粉煤气化煤制甲醇近零碳排放工艺研究[J]. 化工学报, 2022, 73(4): 1714-1723.
[15] 任嘉辉, 刘豫, 刘朝, 刘浪, 李莹. 基于分子指纹和拓扑指数的工质临界温度理论预测[J]. 化工学报, 2022, 73(4): 1493-1500.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!