化工学报 ›› 2022, Vol. 73 ›› Issue (6): 2589-2602.doi: 10.11949/0438-1157.20220452

• 流体力学与传递现象 • 上一篇    下一篇

鼓泡塔内空气-醋酸体系流体力学参数的CFD-PBM耦合模型数值模拟

张文龙1,2(),宁尚雷1,2,靳海波1,2(),马磊1,2,何广湘1,2,杨索和1,2,郭晓燕1,2,张荣月1,2   

  1. 1.北京石油化工学院新材料与化工学院,北京 102617
    2.燃料清洁化及高效催化减排技术北京市重点实验室,北京 102617
  • 收稿日期:2022-03-30 修回日期:2022-06-01 出版日期:2022-06-05 发布日期:2022-06-30
  • 通讯作者: 靳海波 E-mail:2018520014@bipt.edu.cn;jinhaibo@bipt.edu.cn
  • 作者简介:张文龙(1995—),男,硕士研究生,2018520014@bipt.edu.cn
  • 基金资助:
    国家自然科学基金项目(91634101);北京市属高校高水平教师队伍建设支持计划高水平创新团队建设计划项目(HT20180508)

Numerical simulation of hydrodynamic parameters with air-acetic acid system using CFD-PBM coupled model

Wenlong ZHANG1,2(),Shanglei NING1,2,Haibo JIN1,2(),Lei MA1,2,Guangxiang HE1,2,Suohe YANG1,2,Xiaoyan GUO1,2,Rongyue ZHANG1,2   

  1. 1.College of New Material and Chemical Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China
    2.Beijing Key Laboratory of Fuels Cleaning and Advanced Catalytic Emission Reduction Technology, Beijing 102617, China
  • Received:2022-03-30 Revised:2022-06-01 Published:2022-06-05 Online:2022-06-30
  • Contact: Haibo JIN E-mail:2018520014@bipt.edu.cn;jinhaibo@bipt.edu.cn

摘要:

通过二维和三维CFD-PBM耦合模型对空气-醋酸体系中流体力学参数进行数值模拟,采用表面张力修正曳力模型与聚并模型,考察了醋酸浓度对鼓泡塔内气含率、气泡大小分布及轴向液速等参数的影响,与差压法、光纤探针和电阻层析成像技术(ERT)测量的实验数据进行了对比,并讨论分析了气含率和气泡直径等流体力学参数的模拟结果。结果表明,醋酸浓度在70%~80%(质量分数)范围内平均气含率存在最大值,且平均气含率的预测值在±10%误差内,三维模拟结果和ERT实验值吻合较好,说明修正后的模型在不同浓度醋酸体系中具有较好的预测性。

关键词: 空气-醋酸体系, 鼓泡塔, 计算流体力学, 两相流, 气含率

Abstract:

In this paper, the influence of the concentration of acetic acid on the hydrodynamic parameters in the bubble column is investigated in the bubble column PX oxidation reactor using two-dimensional and three-dimensional CFD-PBM coupled model. The experimental data are obtained by differential pressure method, fiber optic probe and electrical resistance tomography (ERT) technique, and the simulation results are compared with the experimental values. The drag force model and the coalescence model are corrected by the surface tension term, and the modified model is used for numerical simulation in the acetic acid system with ambient temperature and ambient pressure. The simulation results of the hydrodynamic parameters are analyzed. The results show that when the concentration of acetic acid is in the range of 70%—80%(mass), the average gas holdup has a maximum value. The predicted value of the average gas holdup is within ±10% error, and the three-dimensional simulation results are in good agreement with the ERT experimental value. The modified model has better predictability in acetic acid systems with different concentrations.

Key words: air-acetic acid system, bubble column, computational fluid dynamics, two-phase flow, gas holdup

中图分类号: 

  • TQ 028.8

表1

聚并系数的修正"

Ug/(m/s)Concentration/%(mass)σ/σ0CeαexpαsimError/%
0.047501.441.200.1200.113-6.19
0.071501.441.150.1520.1583.95
0.094501.441.100.1850.2018.65
0.047601.361.150.1390.130-6.92
0.071601.361.100.1740.1771.72
0.094601.361.050.2120.2214.25
0.047701.291.100.1430.141-1.40
0.071701.291.050.1820.1872.75
0.094701.291.000.2200.2325.45
0.047801.201.050.1400.134-6.83
0.071801.201.000.1740.1824.60
0.094801.200.950.2070.2269.17
0.047901.111.000.1210.116-4.13
0.071901.110.950.1600.1653.13
0.094901.110.900.1950.2086.67
0.0471001.000.950.1170.108-7.70
0.0711001.000.900.1530.1551.31
0.0941001.000.850.1930.1993.11

图1

不同质量分数的醋酸物理性质"

图2

不同网格质量对径向气含率的影响"

图3

不同曳力模型和表观气速下径向气含率对比"

图4

不同轴向高度下的径向气含率分布"

图5

空气-醋酸体系下径向气含率分布"

图6

不同醋酸浓度和表观气速下平均气含率分布"

图7

空气-醋酸体系下轴向液速分布"

图8

不同醋酸浓度和表观气速下径向气泡直径分布"

图9

气泡数密度分布(z=0.86 m)"

图10

不同表观气速下不同浓度醋酸横截面气含率云图分布(z = 0.86 m)"

图11

80%醋酸三维柱体气含率分布"

图12

80%醋酸轴向截面气含率云图分布"

图13

不同浓度醋酸不同轴向高度处径向截面气含率云图分布"

1 Guo K Y, Wang T F, Yang G Y, et al. Distinctly different bubble behaviors in a bubble column with pure liquids and alcohol solutions[J]. Journal of Chemical Technology & Biotechnology, 2017, 92(2): 432-441.
2 Montoya G, Lucas D, Baglietto E, et al. A review on mechanisms and models for the churn-turbulent flow regime[J]. Chemical Engineering Science, 2016, 141: 86-103.
3 李光. 鼓泡塔反应器气液两相流数值模拟模型及应用[D]. 上海: 华东理工大学, 2010.
Li G. Two-phase flow dynamical simulations and modelling of bubble column reactors[D]. Shanghai: East China University of Science and Technology, 2010.
4 Jin H, Yang S, Zhang T, et al. Bubble behavior of a large-scale bubble column with elevated pressure[J]. Chemical Engineering & Technology, 2004, 27(9): 1007-1013.
5 Tran B V, Nguyen D D, Ngo S I, et al. Hydrodynamics and simulation of air–water homogeneous bubble column under elevated pressure[J]. AIChE Journal, 2019, 65(10): e16685.
6 Zhang X B, Luo Z H. Effects of bubble coalescence and breakup models on the simulation of bubble columns[J]. Chemical Engineering Science, 2020, 226: 115850.
7 Zhang X B, Zheng R Q, Luo Z H. CFD-PBM simulation of bubble columns: effect of parameters in the class method for solving PBEs[J]. Chemical Engineering Science, 2020, 226: 115853.
8 Yu X, Zhou H, Jing S, et al. CFD-PBM simulation of two-phase flow in a pulsed disc and doughnut column with directly measured breakup kernel functions[J]. Chemical Engineering Science, 2019, 201: 349-361.
9 Yang N, Xiao Q. A mesoscale approach for population balance modeling of bubble size distribution in bubble column reactors[J]. Chemical Engineering Science, 2017, 170: 241-250.
10 张佳宝, 崔丽杰, 杨宁. 曳力模型和湍流模型对内环流反应器数值模拟的影响[J]. 化工学报, 2018, 69(1): 389-395.
Zhang J B, Cui L J, Yang N. Effects of drag model and turbulence model on simulation of air-lift internal-loop reactor[J]. CIESC Journal, 2018, 69(1): 389-395.
11 Gong S G, Gao N N, Han L C, et al. A theoretical model for bubble coalescence by coupling film drainage with approach processes[J]. Chemical Engineering Science, 2020, 213: 115387.
12 Wang T F, Wang J F, Jin Y. A novel theoretical breakup kernel function for bubbles/droplets in a turbulent flow[J]. Chemical Engineering Science, 2003, 58(20): 4629-4637.
13 Wang T F, Wang J F, Jin Y. A CFD-PBM coupled model for gas-liquid flows[J]. AIChE Journal, 2006, 52(1): 125-140.
14 王铁峰. 气液(浆)反应器流体力学行为的实验研究和数值模拟[D]. 北京: 清华大学, 2004.
Wang T F. Experimental study and numerical simulation on the hydrodynamics in gas-liquid (slurry) reactors[D]. Beijing: Tsinghua University, 2004.
15 Prince M J, Blanch H W. Bubble coalescence and break-up in air-sparged bubble columns[J]. AIChE Journal, 1990, 36(10): 1485-1499.
16 Luo H, Svendsen H F. Modeling and simulation of binary approach by energy conservation analysis[J]. Chemical Engineering Communications, 1996, 145(1): 145-153.
17 Lehr F, Millies M, Mewes D. Bubble-size distributions and flow fields in bubble columns[J]. AIChE Journal, 2002, 48(11): 2426-2443.
18 Luo H A, Svendsen H F. Theoretical model for drop and bubble breakup in turbulent dispersions[J]. AIChE Journal, 1996, 42(5): 1225-1233.
19 Shi W B, Yang J, Li G, et al. Modelling of breakage rate and bubble size distribution in bubble columns accounting for bubble shape variations[J]. Chemical Engineering Science, 2018, 187: 391-405.
20 Hinze J O. Fundamentals of the hydrodynamic mechanism of splitting in dispersion processes[J]. AIChE Journal, 1955, 1(3): 289-295.
21 Tikhomirov V M. On the breakage of drops in a turbulent flow[M]//Selected Works of A. N. Kolmogorov. Dordrecht: Springer Netherlands, 1991: 339-343.
22 Yan P, Jin H B, Gao X, et al. Numerical analysis of bubble characteristics in a pressurized bubble column using CFD coupled with a population balance model[J]. Chemical Engineering Science, 2021, 234: 116427.
23 Yan P, Jin H B, He G X, et al. Numerical simulation of bubble characteristics in bubble columns with different liquid viscosities and surface tensions using a CFD-PBM coupled model[J]. Chemical Engineering Research and Design, 2020, 154: 47-59.
24 Yan P, Jin H B, He G X, et al. CFD simulation of hydrodynamics in a high-pressure bubble column using three optimized drag models of bubble swarm[J]. Chemical Engineering Science, 2019, 199: 137-155.
25 Zhang B, Kong L T, Jin H B, et al. CFD simulation of gas-liquid flow in a high-pressure bubble column with a modified population balance model[J]. Chinese Journal of Chemical Engineering, 2018, 26(6): 1350-1358.
26 张文龙, 侯燕, 靳海波, 等. 加温加压下CFD-PBM耦合模型空气-水两相流数值模拟研究[J]. 化工学报, 2021, 72(9): 4594-4606.
Zhang W L, Hou Y, Jin H B, et al. Numerical simulation of air-water two-phase flow under elevated pressures and temperatures using CFD-PBM coupled model[J]. CIESC Journal, 2021, 72(9): 4594-4606.
27 Tabib M V, Roy S A, Joshi J B. CFD simulation of bubble column—an analysis of interphase forces and turbulence models[J]. Chemical Engineering Journal, 2008, 139(3): 589-614.
28 Li J H, Cheng C L, Zhang Z D, et al. The EMMS model—its application, development and updated concepts[J]. Chemical Engineering Science, 1999, 54(22): 5409-5425.
29 张煜. 湍动鼓泡塔充分发展段的流体力学与内构件技术研究[D]. 杭州: 浙江大学, 2011.
Zhang Y. Hydrodynamics of turbulent bubble column with and without internals in well-developed flow region[D]. Hangzhou: Zhejiang University, 2011.
30 Frank T, Zwart P J, Krepper E, et al. Validation of CFD models for mono- and polydisperse air-water two-phase flows in pipes[J]. Nuclear Engineering and Design, 2008, 238(3): 647-659.
31 de Bertodano M L, Lahey R T, Jones O C. Turbulent bubbly two-phase flow data in a triangular duct[J]. Nuclear Engineering and Design, 1994, 146(1/2/3): 43-52.
32 Ning S L, Jin H B, He G X, et al. Effects of the microbubble generation mode on hydrodynamic parameters in gas–liquid bubble columns[J]. Processes, 2020, 8(6): 663.
33 王珏, 杨宁. 基于EMMS方法的鼓泡塔反应器CFD及群平衡模拟[J]. 化工学报, 2017, 68(7): 2667-2677.
Wang J, Yang N. CFD-PBM simulation with EMMS correctors for bubble column reactors[J]. CIESC Journal, 2017, 68(7): 2667-2677.
34 李兆奇. 列管型鼓泡塔中流动发展规律的研究[D]. 杭州: 浙江大学, 2015.
Li Z Q. Flow development in bubble columns with pipe bundle internals[D]. Hangzhou: Zhejiang University, 2015.
35 Ruzicka M C, Drahoš J, Mena P C, et al. Effect of viscosity on homogeneous-heterogeneous flow regime transition in bubble columns[J]. Chemical Engineering Journal, 2003, 96(1/2/3): 15-22.
36 黄娟, 戴干策. 升温鼓泡塔内有机溶液的气含率[J]. 过程工程学报, 2008, 8(2): 209-216.
Huang J, Dai G C. Gas holdup in a bubble column at elevated temperature with organic liquid solutions[J]. The Chinese Journal of Process Engineering, 2008, 8(2): 209-216.
37 Krishna R, Swart D J W A, Ellenberger J, et al. Gas holdup in slurry bubble columns[J]. AIChE Journal, 1997, 43(2): 311-316.
[1] 李晨曦, 刘永峰, 张璐, 刘海峰, 宋金瓯, 何旭. O2/CO2氛围下正庚烷的燃烧机理研究[J]. 化工学报, 2023, 74(5): 2157-2169.
[2] 董鑫, 单永瑞, 刘易诺, 冯颖, 张建伟. 非牛顿流体气泡羽流涡特性数值模拟研究[J]. 化工学报, 2023, 74(5): 1950-1964.
[3] 袁子涵, 王淑彦, 邵宝力, 谢磊, 陈曦, 马一玫. 基于幂律液固曳力模型流化床内湿颗粒流动特性的研究[J]. 化工学报, 2023, 74(5): 2000-2012.
[4] 李正涛, 袁志杰, 贺高红, 姜晓滨. 疏水界面上的NaCl液滴蒸发过程内环流调控机制研究[J]. 化工学报, 2023, 74(5): 1904-1913.
[5] 许文烜, 江锦波, 彭新, 门日秀, 刘畅, 彭旭东. 宽速域三种典型型槽油气密封泄漏与成膜特性对比研究[J]. 化工学报, 2023, 74(4): 1660-1679.
[6] 任金胜, 刘克润, 焦志伟, 刘家祥, 于源. 涡流空气分级机近导叶处团聚体解团机理研究[J]. 化工学报, 2023, 74(4): 1528-1538.
[7] 周艾然, 陆平, 夏建辉, 李冬勤, 郭杰, 杜明, 董立春. 氯化钛白氧化反应器结疤问题分析及数值模拟[J]. 化工学报, 2023, 74(4): 1499-1508.
[8] 郑书闽, 郭鹏程, 颜建国, 王帅, 李文博, 周淇. 微小通道内过冷流动沸腾阻力特性实验及预测研究[J]. 化工学报, 2023, 74(4): 1549-1560.
[9] 何万媛, 陈一宇, 朱春英, 付涛涛, 高习群, 马友光. 阵列凸起微通道内气液两相传质特性研究[J]. 化工学报, 2023, 74(2): 690-697.
[10] 杨星宇, 马优, 朱春英, 付涛涛, 马友光. 梳状并行微通道内液液分布规律研究[J]. 化工学报, 2023, 74(2): 698-706.
[11] 白剑钊, 郭子轩, 王德武, 刘燕, 王若瑾, 唐猛, 张少峰. 摇摆对气液并流模式立体旋流筛板压降的影响研究[J]. 化工学报, 2023, 74(2): 707-720.
[12] 盛林, 昌宇, 邓建, 骆广生. 阶梯式T型微通道内有序气泡群的形成和流动特性研究[J]. 化工学报, 2023, 74(1): 416-427.
[13] 苏巧玲, 王军锋, 张伟, 詹水清, 吴天一. 低电导率工质中气泡的极化运动实验研究[J]. 化工学报, 2022, 73(9): 3861-3869.
[14] 张童, 杨扬, 叶丁丁, 陈蓉, 朱恂, 廖强. 催化剂分布对可渗透阳极微流体燃料电池性能特性影响的研究[J]. 化工学报, 2022, 73(9): 4156-4162.
[15] 王凯玥, 马永丽, 李琛, 刘明言. 气液固微型流化床的气液传质系数[J]. 化工学报, 2022, 73(8): 3529-3540.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!