化工学报 ›› 2022, Vol. 73 ›› Issue (11): 5251-5262.DOI: 10.11949/0438-1157.20221000
收稿日期:
2022-07-15
修回日期:
2022-09-29
出版日期:
2022-11-05
发布日期:
2022-12-06
通讯作者:
玄伟伟
作者简介:
玄伟伟(1988—),女,博士,副教授,xww@ustb.edu.cn
基金资助:
Weiwei XUAN1,2(), Yanwu DONG1, Hailun WANG1
Received:
2022-07-15
Revised:
2022-09-29
Online:
2022-11-05
Published:
2022-12-06
Contact:
Weiwei XUAN
摘要:
气化技术是处理日益增多的废旧塑料并生产富H2合成气的重要方法。利用ReaxFF-MD与DFT方法相结合研究了聚丙烯(PP)塑料水蒸气气化的反应机理及各产物气的生成路径,进一步探究了温度、水含量对合成气产物分布的影响。研究结果表明:PP塑料的水蒸气气化前期以解离能较小处的单体连接键断裂形成丙烯(CH3—CH
中图分类号:
玄伟伟, 董彦吾, 王海轮. 基于ReaxFF-MD和DFT的废旧PP塑料水蒸气气化机理研究[J]. 化工学报, 2022, 73(11): 5251-5262.
Weiwei XUAN, Yanwu DONG, Hailun WANG. Study on the steam gasification mechanism of waste PP plastics based on ReaxFF-MD and DFT methods[J]. CIESC Journal, 2022, 73(11): 5251-5262.
图1 模型构建过程:(a)丙烯分子;(b)水分子;(c)优化后PP链;(d)水蒸气气化体系;(e)热解体系(1 Å=0.1 nm)
Fig.1 Model construction process: (a) propylene molecule; (b) water molecule; (c) PP chain after optimization; (d) steam gasification system; (e) pyrolysis system
体系 | 序号 | PP链的数量(n=17) | H2O的数量 | 水塑比/(g/g) | 温度/K |
---|---|---|---|---|---|
1 | 1 | 1 | 102 | 2.56 | 3000 |
2 | 1 | 0 | 0 | 3000 | |
2 | 3 4 5 6 7 | 20 20 20 20 20 | 2040 2040 2040 2040 2040 | 2.56 2.56 2.56 2.56 2.56 | 2500 2750 3000 3250 3500 |
3 | 8 9 10 11 12 | 20 20 20 20 20 | 0 398 795 1195 1590 | 0 0.5 1.0 1.5 2.0 | 3000 3000 3000 3000 3000 |
表1 ReaxFF-MD模拟的PP气化详细参数
Table 1 Parameters of ReaxFF-MD simulation for PP gasification
体系 | 序号 | PP链的数量(n=17) | H2O的数量 | 水塑比/(g/g) | 温度/K |
---|---|---|---|---|---|
1 | 1 | 1 | 102 | 2.56 | 3000 |
2 | 1 | 0 | 0 | 3000 | |
2 | 3 4 5 6 7 | 20 20 20 20 20 | 2040 2040 2040 2040 2040 | 2.56 2.56 2.56 2.56 2.56 | 2500 2750 3000 3250 3500 |
3 | 8 9 10 11 12 | 20 20 20 20 20 | 0 398 795 1195 1590 | 0 0.5 1.0 1.5 2.0 | 3000 3000 3000 3000 3000 |
图2 不同水塑比条件下的PP模型: (a)S/P=2.56; (b)S/P=0; (c)S/P=0.5; (d)S/P=1.0; (e)S/P=1.5; (f)S/P=2.0
Fig.2 PP model under different steam plastic ratio: (a)S/P=2.56; (b)S/P=0; (c)S/P=0.5; (d)S/P=1.0; (e)S/P=1.5; (f)S/P=2.0
气体组分 | 体积占比/% | ||
---|---|---|---|
文献[ | 文献[ | ReaxFF-MD | |
H2 | 61.8 | 67.25 | 65.26 |
CO | 28.7 | 25.24 | 31.45 |
CO2 | 6.5 | 7.33 | 0.84 |
CH4 | 2.5 | 0.18 | 2.27 |
C2~C4 | 0.8 | 0 | 0.18 |
表2 本文模拟和文献实验的产物气组分对比
Table 2 Comparison of product gas components between this simulation and reference
气体组分 | 体积占比/% | ||
---|---|---|---|
文献[ | 文献[ | ReaxFF-MD | |
H2 | 61.8 | 67.25 | 65.26 |
CO | 28.7 | 25.24 | 31.45 |
CO2 | 6.5 | 7.33 | 0.84 |
CH4 | 2.5 | 0.18 | 2.27 |
C2~C4 | 0.8 | 0 | 0.18 |
C(n) | 次数 | C(n) | 次数 | C(n) | 次数 | C(n) | 次数 | C(n) | 次数 |
---|---|---|---|---|---|---|---|---|---|
C1 | 4 | C6 | 3 | C11 | 2 | C16 | 0 | C21 | 4 |
C2 | 1 | C7 | 0 | C12 | 6 | C17 | 2 | C22 | 2 |
C3 | 3 | C8 | 1 | C13 | 1 | C18 | 4 | C23 | 1 |
C4 | 0 | C9 | 3 | C14 | 0 | C19 | 3 | C24 | 1 |
C5 | 3 | C10 | 0 | C15 | 4 | C20 | 2 | C25 | 1 |
表3 PP链初始断键位置
Table 3 The initial breaking position of PP chain
C(n) | 次数 | C(n) | 次数 | C(n) | 次数 | C(n) | 次数 | C(n) | 次数 |
---|---|---|---|---|---|---|---|---|---|
C1 | 4 | C6 | 3 | C11 | 2 | C16 | 0 | C21 | 4 |
C2 | 1 | C7 | 0 | C12 | 6 | C17 | 2 | C22 | 2 |
C3 | 3 | C8 | 1 | C13 | 1 | C18 | 4 | C23 | 1 |
C4 | 0 | C9 | 3 | C14 | 0 | C19 | 3 | C24 | 1 |
C5 | 3 | C10 | 0 | C15 | 4 | C20 | 2 | C25 | 1 |
键类型m | 解离能/(kJ/mol) | |||
---|---|---|---|---|
键位置n=1 | 键位置n=2 | 键位置n=3 | 键位置n=4 | |
1 | 41.0568 | 83.4732 | 125.1554 | |
2 | 67.0016 | 317.8537 | 324.8633 | 329.6969 |
3 | 410.2765 | 344.4268 | 348.8610 | 342.7835 |
表4 C12H25·示例结构的C—C键解离能(BDE)
Table 4 C—C dissociation bond energy (BDE) of C12H25·example structure
键类型m | 解离能/(kJ/mol) | |||
---|---|---|---|---|
键位置n=1 | 键位置n=2 | 键位置n=3 | 键位置n=4 | |
1 | 41.0568 | 83.4732 | 125.1554 | |
2 | 67.0016 | 317.8537 | 324.8633 | 329.6969 |
3 | 410.2765 | 344.4268 | 348.8610 | 342.7835 |
1 | Alam O, Billah M, Ding Y J. Characteristics of plastic bags and their potential environmental hazards[J]. Resources, Conservation and Recycling, 2018, 132: 121-129. |
2 | Faraca G, Edjabou V M, Boldrin A, et al. Combustible waste collected at Danish recycling centres: characterisation, recycling potentials and contribution to environmental savings[J]. Waste Management, 2019, 89: 354-365. |
3 | Hopewell J, Dvorak R, Kosior E. Plastics recycling: challenges and opportunities[J]. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 2009, 364(1526): 2115-2126. |
4 | Andrady A L, Neal M A. Applications and societal benefits of plastics[J]. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 2009, 364(1526): 1977-1984. |
5 | Facts Plastics-the 2021. An analysis of European plastics production, demand and waste data[EB/OL]. 2021[2022-07-10]. . |
6 | Zhang F, Zhao Y T, Wang D D, et al. Current technologies for plastic waste treatment: a review[J]. Journal of Cleaner Production, 2021, 282: 124523. |
7 | Wilson D C, Velis C A. Waste management: still a global challenge in the 21st century: an evidence-based call for action[J]. Waste Management & Research: the Journal of the International Solid Wastes and Public Cleansing Association, ISWA, 2015, 33(12): 1049-1051. |
8 | Janajreh I, Adeyemi I, Elagroudy S. Gasification feasibility of polyethylene, polypropylene, polystyrene waste and their mixture: experimental studies and modeling[J]. Sustainable Energy Technologies and Assessments, 2020, 39: 100684. |
9 | He M Y, Xiao B, Hu Z Q, et al. Syngas production from catalytic gasification of waste polyethylene: influence of temperature on gas yield and composition[J]. International Journal of Hydrogen Energy, 2009, 34(3): 1342-1348. |
10 | Kodera Y, Ishihara Y, Kuroki T. Novel process for recycling waste plastics to fuel gas using a moving-bed reactor[J]. Energy & Fuels, 2006, 20(1): 155-158. |
11 | Sharuddin S A, Abnisa F, Daud W W, et al. Pyrolysis of plastic waste for liquid fuel production as prospective energy resource[J]. IOP Conference Series: Materials Science and Engineering, 2018, 334: 012001. |
12 | Lopez G, Artetxe M, Amutio M, et al. Recent advances in the gasification of waste plastics. A critical overview[J]. Renewable and Sustainable Energy Reviews, 2018, 82: 576-596. |
13 | Wilk V, Hofbauer H. Conversion of mixed plastic wastes in a dual fluidized bed steam gasifier[J]. Fuel, 2013, 107: 787-799. |
14 | Erkiaga A, Lopez G, Amutio M, et al. Syngas from steam gasification of polyethylene in a conical spouted bed reactor[J]. Fuel, 2013, 109: 461-469. |
15 | Erkiaga A, Lopez G, Barbarias I, et al. HDPE pyrolysis-steam reforming in a tandem spouted bed-fixed bed reactor for H2 production[J]. Journal of Analytical and Applied Pyrolysis, 2015, 116: 34-41. |
16 | Tavares R, Ramos A, Rouboa A. Microplastics thermal treatment by polyethylene terephthalate-biomass gasification[J]. Energy Conversion and Management, 2018, 162: 118-131. |
17 | Acomb J C, Wu C F, Williams P T. Control of steam input to the pyrolysis-gasification of waste plastics for improved production of hydrogen or carbon nanotubes[J]. Applied Catalysis B: Environmental, 2014, 147: 571-584. |
18 | Wu C F, Williams P T. Ni/CeO2/ZSM-5 catalysts for the production of hydrogen from the pyrolysis-gasification of polypropylene[J]. International Journal of Hydrogen Energy, 2009, 34(15): 6242-6252. |
19 | Dou B L, Wang K Q, Jiang B, et al. Fluidized-bed gasification combined continuous sorption-enhanced steam reforming system to continuous hydrogen production from waste plastic[J]. International Journal of Hydrogen Energy, 2016, 41(6): 3803-3810. |
20 | Wu S L, Kuo J H, Wey M Y. Hydrogen promotion by Co/SiO2@HZSM-5 core-shell catalyst for syngas from plastic waste gasification: the combination of functional materials[J]. International Journal of Hydrogen Energy, 2019, 44(26): 13480-13489. |
21 | Mastral J F, Berrueco C, Gea M, et al. Catalytic degradation of high density polyethylene over nanocrystalline HZSM-5 zeolite[J]. Polymer Degradation and Stability, 2006, 91(12): 3330-3338. |
22 | van Duin A C T, Dasgupta S, Lorant F, et al. ReaxFF: a reactive force field for hydrocarbons[J]. The Journal of Physical Chemistry A, 2001, 105(41): 9396-9409. |
23 | Agrawalla S, van Duin A C T. Development and application of a ReaxFF reactive force field for hydrogen combustion[J]. The Journal of Physical Chemistry A, 2011, 115(6): 960-972. |
24 | Saha B, Schatz G C. Carbonization in polyacrylonitrile (PAN) based carbon fibers studied by ReaxFF molecular dynamics simulations[J]. The Journal of Physical Chemistry B, 2012, 116(15): 4684-4692. |
25 | Zheng M, Li X X, Liu J, et al. Initial chemical reaction simulation of coal pyrolysis via ReaxFF molecular dynamics[J]. Energy & Fuels, 2013, 27(6): 2942-2951. |
26 | Chen C, Zhao L L, Wang J F, et al. Reactive molecular dynamics simulations of biomass pyrolysis and combustion under various oxidative and humidity environments[J]. Industrial & Engineering Chemistry Research, 2017, 56(43): 12276-12288. |
27 | He X C, Chen D Z. ReaxFF MD study on the early stage co-pyrolysis of mixed PE/PP/PS plastic waste[J]. Journal of Fuel Chemistry and Technology, 2022, 50(3): 346-356. |
28 | Castro-Marcano F, Kamat A M, Russo M F Jr, et al. Combustion of an Illinois No. 6 coal char simulated using an atomistic char representation and the ReaxFF reactive force field[J]. Combustion and Flame, 2012, 159(3): 1272-1285. |
29 | Zheng M, Li X X, Liu J, et al. Pyrolysis of Liulin coal simulated by GPU-based ReaxFF MD with cheminformatics analysis[J]. Energy & Fuels, 2014, 28(1): 522-534. |
30 | Zheng M, Wang Z, Li X X, et al. Initial reaction mechanisms of cellulose pyrolysis revealed by ReaxFF molecular dynamics[J]. Fuel, 2016, 177: 130-141. |
31 | Knyazev V D. Effects of chain length on the rates of C—C bond dissociation in linear alkanes and polyethylene[J]. The Journal of Physical Chemistry A, 2007, 111(19): 3875-3883. |
32 | Smith K D, Bruns M, Stoliarov S I, et al. Assessing the effect of molecular weight on the kinetics of backbone scission reactions in polyethylene using reactive molecular dynamics[J]. Polymer, 2011, 52(14): 3104-3111. |
33 | Cheng X M, Wang Q D, Li J Q, et al. ReaxFF molecular dynamics simulations of oxidation of toluene at high temperatures[J]. The Journal of Physical Chemistry. A, 2012, 116(40): 9811-9818. |
34 | Hong D K, Li Z H, Si T, et al. A study of the effect of H2O on char oxidation during O2/H2O combustion using reactive dynamic simulation[J]. Fuel, 2020, 280: 118713. |
35 | Liu X Y, Wang T, Chu J C, et al. Understanding lignin gasification in supercritical water using reactive molecular dynamics simulations[J]. Renewable Energy, 2020, 161: 858-866. |
36 | Evans D J, Holian B L. The nose-hoover thermostat[J]. The Journal of Chemical Physics, 1985, 83(8): 4069-4074. |
37 | Chenoweth K, van Duin A C T, Goddard W A. ReaxFF reactive force field for molecular dynamics simulations of hydrocarbon oxidation[J]. The Journal of Physical Chemistry A, 2008, 112(5): 1040-1053. |
38 | Milne B J, Behie L A, Berruti F. Recycling of waste plastics by ultrapyrolysis using an internally circulating fluidized bed reactor[J]. Journal of Analytical and Applied Pyrolysis, 1999, 51(1/2): 157-166. |
39 | Audisio G, Bertini F. Molecular weight and pyrolysis products distribution of polymers (I): Polystyrene[J]. Journal of Analytical and Applied Pyrolysis, 1992, 24(1): 61-74. |
40 | Wu C F, Williams P T. Hydrogen production by steam gasification of polypropylene with various nickel catalysts[J]. Applied Catalysis B: Environmental, 2009, 87(3/4): 152-161. |
41 | Saebea D, Ruengrit P, Arpornwichanop A, et al. Gasification of plastic waste for synthesis gas production[J]. Energy Reports, 2020, 6: 202-207. |
[1] | 陈哲文, 魏俊杰, 张玉明. 超临界水煤气化耦合SOFC发电系统集成及其能量转化机制[J]. 化工学报, 2023, 74(9): 3888-3902. |
[2] | 宋明昊, 赵霏, 刘淑晴, 李国选, 杨声, 雷志刚. 离子液体脱除模拟油中挥发酚的多尺度模拟与研究[J]. 化工学报, 2023, 74(9): 3654-3664. |
[3] | 胡建波, 刘洪超, 胡齐, 黄美英, 宋先雨, 赵双良. 有机笼跨细胞膜易位行为的分子动力学模拟研究[J]. 化工学报, 2023, 74(9): 3756-3765. |
[4] | 赵佳佳, 田世祥, 李鹏, 谢洪高. SiO2-H2O纳米流体强化煤尘润湿性的微观机理研究[J]. 化工学报, 2023, 74(9): 3931-3945. |
[5] | 陈杰, 林永胜, 肖恺, 杨臣, 邱挺. 胆碱基碱性离子液体催化合成仲丁醇性能研究[J]. 化工学报, 2023, 74(9): 3716-3730. |
[6] | 韩晨, 司徒友珉, 朱斌, 许建良, 郭晓镭, 刘海峰. 协同处理废液的多喷嘴粉煤气化炉内反应流动研究[J]. 化工学报, 2023, 74(8): 3266-3278. |
[7] | 汪林正, 陆俞冰, 张睿智, 罗永浩. 基于分子动力学模拟的VOCs热氧化特性分析[J]. 化工学报, 2023, 74(8): 3242-3255. |
[8] | 陈吉, 洪泽, 雷昭, 凌强, 赵志刚, 彭陈辉, 崔平. 基于分子动力学的焦炭溶损反应及其机理研究[J]. 化工学报, 2023, 74(7): 2935-2946. |
[9] | 何晓崐, 刘锐, 薛园, 左然. MOCVD生长AlN单晶薄膜的气相和表面化学反应综述[J]. 化工学报, 2023, 74(7): 2800-2813. |
[10] | 董明, 徐进良, 刘广林. 超临界水非均质特性分子动力学研究[J]. 化工学报, 2023, 74(7): 2836-2847. |
[11] | 刘远超, 蒋旭浩, 邵钶, 徐一帆, 钟建斌, 李耑. 几何尺寸及缺陷对石墨炔纳米带热输运特性的影响[J]. 化工学报, 2023, 74(6): 2708-2716. |
[12] | 顾浩, 张福建, 刘珍, 周文轩, 张鹏, 张忠强. 力电耦合作用下多孔石墨烯膜时间维度的脱盐性能及机理研究[J]. 化工学报, 2023, 74(5): 2067-2074. |
[13] | 周必茂, 许世森, 王肖肖, 刘刚, 李小宇, 任永强, 谭厚章. 烧嘴偏转角度对气化炉渣层分布特性的影响[J]. 化工学报, 2023, 74(5): 1939-1949. |
[14] | 李辰鑫, 潘艳秋, 何流, 牛亚宾, 俞路. 基于碳微晶结构的炭膜模型及其气体分离模拟[J]. 化工学报, 2023, 74(5): 2057-2066. |
[15] | 张全碧, 羊依金, 郭旭晶. 芬顿氧化法对利福平制药废水中溶解性有机物的催化降解[J]. 化工学报, 2023, 74(5): 2217-2227. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||