17 |
李艳, 谭厚章, 王学斌, 等.生物质高温热解气、液、固三相产物及碳烟生成特性[J].西安交通大学学报, 2018, 52(1): 61-68.
|
|
Li Y, Tan H Z, Wang X B, et al. Formation mechanisms of three-phase products and soot during the pyrolysis of biomass at high temperatures[J]. Journal of Xi'an Jiaotong University, 2018, 52(1): 61-68.
|
18 |
Ma J L, Fletcher T H, Webb B W. Conversion of coal tar to soot during coal pyrolysis in a post-flame environment[J]. Symposium (International) on Combustion, 1996, 26(2): 3161-3167.
|
19 |
Fletcher T H, Ma J L, Rigby J R, et al. Soot in coal combustion systems[J]. Progress in Energy and Combustion Science, 1997, 23(3): 283-301.
|
20 |
Kurian V, Mahapatra N, Wang B, et al. Analysis of soot formed during the pyrolysis of athabasca oil sand asphaltenes[J]. Energy & Fuels, 2015, 29(10): 6823-6831.
|
21 |
张炜, 宋崇林, 王林, 等. 柴油机燃烧过程中微粒微观结构的变化规律[J].内燃机学报.2010, 28(3): 221-227.
|
|
Zhang W, Song C L, Wang L, et al. Microstructure histories of in-cylinder particulates from a diesel engine[J]. Transactions of CSICE, 2010, 28(3): 221-227.
|
22 |
宋崇林, 李博, 马翔, 等.火焰温度对碳烟微观结构和氧化活性的影响[J].天津大学学报(自然科学与工程技术版), 2015(6): 535-541.
|
|
Song C L, Li B, Ma X, et al. Effect of flame temperature on the microstructure and oxidation reactivity of soot particles[J]. Journal of Tianjin University(Science and Technology), 2015(6): 535-541.
|
23 |
Ishiguro T, Takatori Y, Akihama K. Microstructure of diesel soot particles probed by electron microscopy: first observation of inner core and outer shell[J]. Combustion and Flame, 1997, 108(1/2): 231-234.
|
24 |
王亚军.润滑油对柴油机颗粒物氧化反应性影响的实验研究[D].天津: 天津大学, 2020.
|
|
Wang Y J. Experimental study on effect of lubricating oil on the oxidation reactivity of diesel particles [D]. Tianjin: Tianjin University, 2020.
|
25 |
崔鹏, 刘军恒, 谈秉乾, 等.气氛对柴油机碳烟热老化及其理化特性的影响[J].西安交通大学学报, 2022, 56(4): 23-31.
|
1 |
Wang H. Formation of nascent soot and other condensed-phase materials in flames[J]. Proceedings of the Combustion Institute, 2011, 33(1): 41-67.
|
2 |
Richter H, Howard J B. Formation of polycyclic aromatic hydrocarbons and their growth to soot—a review of chemical reaction pathways[J]. Progress in Energy and Combustion Science, 2000, 26(4/5/6): 565-608.
|
3 |
蒋好, 朱有健, 邵敬爱, 等.生物质热解碳烟的研究进展[J].化工进展, 2021, 40(10): 5772-5785.
|
|
Jiang H, Zhu Y J, Shao J A, et al. Review on soot formation during biomass pyrolysis[J]. Chemical Industry and Engineering Progress, 2021, 40(10): 5772-5785.
|
4 |
He Q, Guo Q H, Umeki K, et al. Soot formation during biomass gasification: a critical review[J]. Renewable and Sustainable Energy Reviews, 2021, 139: 110710.
|
5 |
Umeki K, Häggström G, Bach-Oller A, et al. Reduction of tar and soot formation from entrained-flow gasification of woody biomass by alkali impregnation[J]. Energy & Fuels, 2017, 31(5): 5104-5110.
|
6 |
Chhiti Y, Peyrot M, Salvador S. Soot formation and oxidation during bio-oil gasification: experiments and modeling[J]. Journal of Energy Chemistry, 2013, 22(5): 701-709.
|
7 |
Wilson J M, Baeza-Romero M T, Jones J M, et al. Soot formation from the combustion of biomass pyrolysis products and a hydrocarbon fuel, n-decane: an aerosol time of flight mass spectrometer (ATOFMS) study[J]. Energy & Fuels, 2013, 27(3): 1668-1678.
|
8 |
Feng D D, Guo D W, Shang Q, et al. Mechanism of biochar-gas-tar-soot formation during pyrolysis of different biomass feedstocks: effect of inherent metal species[J].Fuel, 2021, 293: 120409.
|
9 |
Trubetskaya A, Jensen P A, Jensen A D, et al. Effects of several types of biomass fuels on the yield, nanostructure and reactivity of soot from fast pyrolysis at high temperatures[J]. Applied Energy, 2016, 171: 468-482.
|
10 |
Trubetskaya A, Brown A, Tompsett G A, et al. Characterization and reactivity of soot from fast pyrolysis of lignocellulosic compounds and monolignols[J]. Applied Energy, 2018, 212: 1489-1500.
|
11 |
Septien S, Valin S, Peyrot M, et al. Characterization of char and soot from millimetric wood particles pyrolysis in a drop tube reactor between 800°C and 1400°C[J]. Fuel, 2014, 121: 216-224.
|
12 |
Wiinikka H, Toth P, Jansson K, et al. Particle formation during pressurized entrained flow gasification of wood powder: effects of process conditions on chemical composition, nanostructure, and reactivity[J]. Combustion and Flame, 2018, 189: 240-256.
|
25 |
Cui P, Liu J H, Tan B Q . et al. Effect of different atmospheres on the thermal aging and physicochemical characteristics of diesel carbon black[J]. Journal of Xi'an Jiaotong University, 2022, 56(4): 23-31.
|
26 |
Wang L, Song C L, Song J O, et al. Aliphatic C—H and oxygenated surface functional groups of diesel in-cylinder soot: characterizations and impact on soot oxidation behavior[J]. Proceedings of the Combustion Institute, 2013, 34(2): 3099-3106.
|
27 |
Apicella B, PréP, AlfèM, et al. Soot nanostructure evolution in premixed flames by high resolution electron transmission microscopy (HRTEM)[J]. Proceedings of the Combustion Institute, 2015, 35(2): 1895-1902.
|
28 |
Wang C A, Huddle T, Huang C H, et al. Improved quantification of curvature in high-resolution transmission electron microscopy lattice fringe micrographs of soots[J]. Carbon, 2017, 117: 174-181.
|
29 |
Qin K, Lin W G, Fæster S, et al. Characterization of residual particulates from biomass entrained flow gasification[J]. Energy & Fuels, 2013, 27(1): 262-270.
|
13 |
李艳, 谭厚章, 刘原一, 等.热解温度与碱金属对生物质热解碳烟氧化活性的影响[J].西安交通大学学报, 2020, 54(8): 20-26.
|
|
Li Y, Tan H Z, Liu Y Y, et al. Influences of formation temperature and potassium salts on oxidation reactivity of soot from biomass pyrolysis[J]. Journal of Xi'an Jiaotong University, 2020, 54(8): 20-26.
|
14 |
Vander Wal R L, Tomasek A J. Soot oxidation: dependence upon initial nanostructure[J]. Combustion and Flame, 2003, 134(1/2): 1-9.
|
15 |
Müller J O, Su D S, Jentoft R E, et al. Morphology-controlled reactivity of carbonaceous materials towards oxidation[J]. Catalysis Today, 2005, 102/103: 259-265.
|
16 |
AlfèM, Apicella B, Barbella R, et al. Structure-property relationship in nanostructures of young and mature soot in premixed flames[J]. Proceedings of the Combustion Institute, 2009, 32(1): 697-704.
|