1 |
殷伊琳. 我国氢能产业发展现状及展望[J]. 化学工业与工程, 2021, 38(4): 78-83.
|
|
Yin Y L. Present situation and prospect of hydrogen energy industry[J]. Chemical Industry and Engineering, 2021, 38(4): 78-83.
|
2 |
Pan A Q, Liu J, Liu Z P, et al. Application of hydrogen energy and review of current conditions[J]. IOP Conference Series: Earth and Environmental Science, 2020, 526(1): 012124.
|
3 |
Yang Y, Tong L G, Yin S W, et al. Status and challenges of applications and industry chain technologies of hydrogen in the context of carbon neutrality[J]. Journal of Cleaner Production, 2022, 376: 134347.
|
4 |
韩红梅, 杨铮, 王敏, 等. 我国氢气生产和利用现状及展望[J]. 中国煤炭, 2021, 47(5): 59-63.
|
|
Han H M, Yang Z, Wang M, et al. The current situation and prospect of hydrogen production and utilization in China[J]. China Coal, 2021, 47(5): 59-63.
|
5 |
Duan Q L, Xiao H H, Gao W, et al. Experimental investigation of spontaneous ignition and flame propagation at pressurized hydrogen release through tubes with varying cross-section[J]. Journal of Hazardous Materials, 2016, 320: 18-26.
|
6 |
肖华华, 孙金华. 高压氢气泄漏自燃研究现状及展望[J]. 安全与环境学报, 2009, 9(4): 125-129.
|
|
Xiao H H, Sun J H. Advances and prospect of research on self-ignition caused by high-pressure hydrogen leak[J]. Journal of Safety and Environment, 2009, 9(4): 125-129.
|
7 |
巴清心, 赵明斌, 赵泽滢,等. 高压氢气射流火焰的数值模拟[J]. 清华大学学报(自然科学版), 2022, 62(2): 303-311.
|
|
Ba Q X, Zhao M B, Zhao Z Y, et al. Modeling of high pressure hydrogen jet fires[J]. Journal of Tsinghua University (Science and Technology), 2022, 62(2): 303-311.
|
8 |
Katsumi T, Aida T, Aiba K, et al. Outward propagation velocity and acceleration characteristics in hydrogen-air deflagration[J]. International Journal of Hydrogen Energy, 2017, 42(11): 7360-7365.
|
9 |
Li H Z, Xiao H H, Sun J H. Laminar burning velocity, Markstein length, and cellular instability of spherically propagating NH3/H2/air premixed flames at moderate pressures[J]. Combustion and Flame, 2022, 241: 112079.
|
10 |
肖华华. 管道中氢-空气预混火焰传播动力学实验与数值模拟研究[D]. 合肥: 中国科学技术大学, 2013.
|
|
Xiao H H. Experimental and numerical simulation study on flame propagation dynamics of hydrogen-air premixing in pipeline[D]. Hefei: University of Science and Technology of China, 2013.
|
11 |
Jo Y D, Crowl D A. Explosion characteristics of hydrogen-air mixtures in a spherical vessel[J]. Process Safety Progress, 2010, 29(3): 216-223.
|
12 |
Guo H S, Tayebi B, Galizzi C, et al. Burning rates and surface characteristics of hydrogen-enriched turbulent lean premixed methane-air flames[J]. International Journal of Hydrogen Energy, 2010, 35(20): 11342-11348.
|
13 |
Verfondern K, Dienhart B. Experimental and theoretical investigation of liquid hydrogen pool spreading and vaporization[J]. International Journal of Hydrogen Energy, 1997, 22(7): 649-660.
|
14 |
凡双玉, 何田田, 安刚, 等. 液氢泄漏扩散数值模拟研究[J]. 低温工程, 2016(6): 48-53.
|
|
Fan S Y, He T T, An G, et al. Numerical simulation of liquid hydrogen leakage diffusion[J]. Cryogenics, 2016(6): 48-53.
|
15 |
Jin T, Liu Y L, Wei J J, et al. Numerical investigation on the dispersion of hydrogen vapor cloud with atmospheric inversion layer[J]. International Journal of Hydrogen Energy, 2019, 44(41): 23513-23521.
|
16 |
Liu Y L, Liu Z, Wei J J, et al. Spread characteristics of hydrogen vapor cloud for liquid hydrogen spill under different source conditions[J]. International Journal of Hydrogen Energy, 2021, 46(5): 4606-4613.
|
17 |
Pu L, Shao X Y, Zhang S Q, et al. Plume dispersion behaviour and hazard identification for large quantities of liquid hydrogen leakage[J]. Asia-Pacific Journal of Chemical Engineering, 2019, 14(2): e2299.
|
18 |
Friedrich A, Breitung W, Stern G, et al. Ignition and heat radiation of cryogenic hydrogen jets[J]. International Journal of Hydrogen Energy, 2012, 37(22): 17589-17598.
|
19 |
Panda P P, Hecht E S. Ignition and flame characteristics of cryogenic hydrogen releases[J]. International Journal of Hydrogen Energy, 2017, 42(1): 775-785.
|
20 |
Chowdhury B R, Hecht E S. Dispersion of cryogenic hydrogen through high-aspect ratio nozzles[J]. International Journal of Hydrogen Energy, 2021, 46(23): 12311-12319.
|
21 |
Kobayashi H, Muto D, Daimon Y, et al. Experimental study on cryo-compressed hydrogen ignition and flame[J]. International Journal of Hydrogen Energy, 2020, 45(7): 5098-5109.
|
22 |
Cirrone D M C, Makarov D, Molkov V. Thermal radiation from cryogenic hydrogen jet fires[J]. International Journal of Hydrogen Energy, 2019, 44(17): 8874-8885.
|
23 |
Jin L X, Cho H, Lee C, et al. Experimental research and numerical simulation on cryogenic line chill-down process[J]. Cryogenics, 2018, 89: 42-52.
|
24 |
符锡理. 低温系统的预冷过程和计算[J]. 低温工程, 1998(2): 1-6.
|
|
Fu X L. Precooling process of a cryogenic system and calculation of liquid requirement[J]. Cryogenics, 1998(2): 1-6.
|
25 |
Darr S R, Hu H, Glikin N G, et al. An experimental study on terrestrial cryogenic transfer line chilldown (Ⅰ): Effect of mass flux, equilibrium quality, and inlet subcooling[J]. International Journal of Heat and Mass Transfer, 2016, 103: 1225-1242.
|
26 |
周霞, 刘丽, 邱利民, 等. 低温储罐预冷过程预测[J]. 低温工程, 2017(5): 35-41, 59.
|
|
Zhou X, Liu L, Qiu L M, et al. Estimation of pre-cooling process of cryogen tank[J]. Cryogenics, 2017(5): 35-41, 59.
|
27 |
Wang J J, Li Y Z, Wang L, et al. Transient modeling of cryogenic two-phase flow boiling during chill-down process[J]. Applied Thermal Engineering, 2018, 143: 461-471.
|
28 |
卢超. LNG输运管道预冷过程仿真与分析[D]. 上海: 上海交通大学, 2013.
|
|
Lu C. Simulation and analysis of precooling process of LNG transportation pipeline[D]. Shanghai: Shanghai Jiao Tong University, 2013.
|
29 |
Lu J S, Xu S, Deng J J, et al. Numerical prediction of temperature field for cargo containment system (CCS) of LNG carriers during pre-cooling operations[J]. Journal of Natural Gas Science and Engineering, 2016, 29: 382-391.
|
30 |
Johnson J, Shine S R. Transient cryogenic chill down process in horizontal and inclined pipes[J]. Cryogenics, 2015, 71: 7-17.
|
31 |
张林辉. 大型LNG储罐预冷过程研究[D]. 广州: 华南理工大学, 2019.
|
|
Zhang L H. Study on precooling process of large LNG storage tank[D]. Guangzhou: South China University of Technology, 2019.
|
32 |
Başoğul Y, Demircan C, Keçebaş A. Determination of optimum insulation thickness for environmental impact reduction of pipe insulation[J]. Applied Thermal Engineering, 2016, 101: 121-130.
|
33 |
Kaynakli O. Economic thermal insulation thickness for pipes and ducts: a review study[J]. Renewable and Sustainable Energy Reviews, 2014, 30: 184-194.
|
34 |
Kayfeci M. Determination of energy saving and optimum insulation thicknesses of the heating piping systems for different insulation materials[J]. Energy and Buildings, 2014, 69: 278-284.
|
35 |
Ertürk M. Optimum insulation thicknesses of pipes with respect to different insulation materials, fuels and climate zones in Turkey[J]. Energy, 2016, 113: 991-1003.
|
36 |
陶文铨. 传热学[M]. 5版. 北京: 高等教育出版社, 2019.
|
|
Tao W Q. Heat Transfer[M]. 5th ed. Beijing: Higher Education Press, 2019.
|
37 |
郑立刚,朱小超,于水军,等. 浓度和点火位置对氢气-空气预混气爆燃特性影响[J]. 化工学报, 2019, 70(1): 408-416.
|
|
Zheng L G, Zhu X C, Yu S J, et al. Effect of concentration and ignition position on characteristics of premixed hydrogen-air deflagration[J]. CIESC Journal, 2019, 70(1): 408-416.
|
38 |
Kuznetsov M, Denkevits A, Veser A, et al. Flame propagation regimes and critical conditions for flame acceleration and detonation transition for hydrogen-air mixtures at cryogenic temperatures[J]. International Journal of Hydrogen Energy, 2022, 47(71): 30743-30756.
|
39 |
中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 压力容器(合订本): ~GB 150.4—2011[S]. 北京: 中国标准出版社, 2011.
|
|
General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration of the People’s Republic of China. Pressure vessels(bound volume): ~GB 150.4—2011[S]. Beijing: Standards Press of China, 2011.
|