化工学报 ›› 2015, Vol. 66 ›› Issue (8): 2784-2794.DOI: 10.11949/j.issn.0438-1157.20150635
朱晨杰1, 杜风光2, 应汉杰1, 欧阳平凯1
收稿日期:
2015-05-21
修回日期:
2015-05-30
出版日期:
2015-08-05
发布日期:
2015-08-05
通讯作者:
应汉杰
基金资助:
国家自然科学基金项目(21406110);江苏省科技计划项目(BK20140938);车用生物燃料技术国家重点实验室开放基金(KFKT2013001)。
ZHU Chenjie1, DU Fengguang2, YING Hanjie1, OUYANG Pingkai1
Received:
2015-05-21
Revised:
2015-05-30
Online:
2015-08-05
Published:
2015-08-05
Supported by:
supported by the National Natural Science Foundation of China (21406110), Jiangsu Province Natural Science Foundation for Youths (BK20140938) and the State Key Laboratory of Motor Vehicle Biofuel Technology (KFKT2013001).
摘要:
随着不可再生的石化资源的不断消耗以及生态环境的不断恶化,可再生资源和能源的开发和利用受到越来越多的重视。木质纤维素是地球上最丰富的可再生生物质资源,蕴藏量和产量巨大,具有广阔的开发利用前景。本文在介绍国内外木质纤维素资源开发利用研究的基础上,结合当今世界生物质能领域的研发现状,分别概述了经由呋喃类化合物及乙酰丙酸等木质纤维素基平台化合物分子,制备液体燃料和燃料添加剂的最新研究进展。在总结归纳合成途径的同时,分析了现阶段面临的主要问题及可能的解决办法,以期能为木质纤维素类生物质能源化利用的研究提供有益的参考与借鉴。
中图分类号:
朱晨杰, 杜风光, 应汉杰, 欧阳平凯. 木质纤维素基平台化合物催化转化制备液体燃料及燃料添加剂[J]. 化工学报, 2015, 66(8): 2784-2794.
ZHU Chenjie, DU Fengguang, YING Hanjie, OUYANG Pingkai. Catalytic production of liquid hydrocarbon fuels and fuel additives from lignocellulosic platform molecules[J]. CIESC Journal, 2015, 66(8): 2784-2794.
[1] | Collard F X, Blin J. A review on pyrolysis of biomass constituents: mechanisms and composition of the products obtained from the conversion of cellulose, hemicelluloses and lignin [J]. Renewable Sustainable Energy Rev., 2014, 38: 594-608. |
[2] | Bulushev D A, Ross J R H. Catalysis for conversion of biomass to fuels via pyrolysis and gasification: a review [J]. Catal. Today, 2011, 171: 1-13. |
[3] | Lasa H D, Salaices E, Mazumder J, Lucky R. Catalytic steam gasification of biomass: catalysts, thermodynamics and kinetics [J]. Chem. Rev., 2011, 111: 5404-5433. |
[4] | Werpy T, Petersen G. Top value added chemicals from biomass volume (Ⅰ): Results of screening for potential candidates from sugars and synthesis gas [R]. OakRidge: US Department of Energy, 2004. |
[5] | Karinen R, Vilonen K, Niemelfi M. Biorefining: heterogeneously catalyzed reactions of carbohydrates for the production of furfural and hydroxymethyl furfural [J]. ChemSusChem, 2011, 4: 1002-1016. |
[6] | Putten R J V, Waal J C V D, Jong E D, Rasrendra C B, Heeres H J, Vries J G D. Hydroxymethylfurfural, a versatile platform chemical made from renewable resources [J]. Chem. Rev., 2013, 113: 1499-1597. |
[7] | Huber G W, Chheda J N, Barrett C J, Dumesic J A. Production of liquid alkanes by aqueous-phase processing of biomass-derived carbohydrates [J]. Science, 2005, 308: 1446-1450. |
[8] | Huber G W, Dumesic J A. An overview of aqueous-phase catalytic processes for production of hydrogen and alkanes in a biorefinery [J]. Catal. Today, 2006, 111: 119-132. |
[9] | West R M, Liu Z Y, Peter M, Gfirtner C A, Dumesic J A. Carbon-carbon bond formation for biomass-derived furfurals and ketones by aldol condensation in a biphasic system [J]. J. Mol. Catal. A: Chem., 2008, 296: 18-27. |
[10] | Olcay H, Subrahmanyam A V, Xing R, Lajoie J, Dumesic J A, Huber G W. Production of renewable petroleum refinery diesel and jet fuel feedstocks from hemicellulose sugar streams [J]. Energy Environ. Sci., 2013, 6: 205-216. |
[11] | West R M, Liu Z Y, Peter M, Dumesic J A. Liquid alkanes with targeted molecular weights from biomass-derived carbohydrates [J]. ChemSusChem., 2008, 1: 417-424. |
[12] | Yang J, Li N, Li G, Wang W, Wang A, Wang X, Cong Y, Zhang T. Solvent-free synthesis of C10 and C11 branched alkanes from furfural and methyl isobutyl ketone [J]. ChemSusChem, 2013, 6: 1149-1152. |
[13] | Lange J P, Heide E V D, Buijtenen J V, Price R. Furfural—a promising platform for lignocellulosic biofuels [J]. ChemSusChem, 2012, 5: 150-166. |
[14] | Huang Y B, Yang Z, Dai J J, Guo Q X, Fu Y. Production of high quality fuels from lignocellulose-derived chemicals: a convenient C—C bond formation of furfural, 5-methylfurfural and aromatic aldehyde [J]. RSC Adv., 2012, 2: 11211-11214. |
[15] | Liu D, Chen E Y X. Diesel and alkane fuels from biomass by organocatalysis and metal-acid tandem catalysis [J]. ChemSusChem, 2013, 6: 2236-2239. |
[16] | Yang J, Li N, Li G, Wang W, Wang A, Wang X, Cong Y, Zhang T. Synthesis of renewable high-density fuels using cyclopentanone derived from lignocellulose [J]. Chem. Commun., 2014, 50: 2572-2574. |
[17] | James O O, Maity S, Usman L A, Ajanaku K O, Ajani O O, Siyanbola T O, Sahu S, Chaubey R. Towards the conversion of carbohydrate biomass feedstocks to biofuels via hydroxylmethylfurfural [J]. Energy Environ. Sci., 2010, 3: 1833-1850. |
[18] | Sutton A D, Waldie F D, Wu R, Schlaf M, Pete Silks L A, Gordon J C. The hydrodeoxygenation of bioderived furans into alkanes [J]. Nat. Chem., 2013, 5: 428-432. |
[19] | Liu D, Chen E Y X. Integrated catalytic process for biomass conversion and upgrading to C12 furoin and alkane fuel [J]. ACS Catal., 2014, 4: 1302-1310. |
[20] | Zeitsch K J. Furfural Processes in the Chemistry and Technology of Furfural and Its Many By-products, Sugar Series[M]. Dordrecht: Elsevier Science, 2000: 36-74. |
[21] | Corma A, Torre O D L, Renz M, Villandier N. Production of high-quality diesel from biomass waste products [J]. Angew. Chem. Int. Ed., 2011, 50: 2375-2378. |
[22] | Corma A, Torre O D L, Renz M. High-quality diesel from hexose-and pentose-derived biomass platform molecules [J]. ChemSusChem, 2011, 4: 1574-1577. |
[23] | Corma A, Torre O D L, Renz M. Production of high quality diesel from cellulose and hemicellulose by the sylvan process: catalysts and process variables [J]. Energy Environ. Sci., 2012, 5: 6328-6344. |
[24] | Li S, Li N, Li G, Wang A, Cong Y, Wang X, Zhang T. Synthesis of diesel range alkanes with 2-methylfuran and mesityl oxide from lignocellulose [J]. Catal. Today, 2014, 234: 91-99. |
[25] | Li G, Li N, Wang Z, Li C, Wang A, Wang X, Cong Y, Zhang T. Synthesis of high-quality diesel with furfural and 2-methylfuran from hemicellulose [J]. ChemSusChem, 2012, 5: 1958-1966. |
[26] | Li G, Li N, Yang J, Wang A, Wang X, Cong Y, Zhang T. Synthesis of renewable diesel with the 2-methylfuran, butanal and acetone derived from lignocellulose [J]. Bioresour. Technol., 2013, 134: 66-72. |
[27] | Li G, Li N, Li S, Wang A, Cong Y, Wang X, Zhang T. Synthesis of renewable diesel with hydroxyacetone and 2-methyl-furan [J]. Chem. Commun., 2013, 49: 5727-5729. |
[28] | Sitthisa S, Resasco D E. Hydrodeoxygenation of furfural over supported metal catalysts: a comparative study of Cu, Pd and Ni [J]. Catal. Lett., 2011, 141: 784-791. |
[29] | Sitthisa S, An W, Resasco D E. Selective conversion of furfural to methylfuran over silica-supported Ni-Fe bimetallic catalysts [J]. J. Catal., 2011, 284: 90-101 |
[30] | Stevens J G, Bourne R A, Twigg M V, Poliakoff M. Real-time product switching using a twin catalyst system for the hydrogenation of furfural in supercritical CO2 [J]. Angew. Chem. Int. Ed., 2010, 49: 8856-8859. |
[31] | Haan R J, Lange J P. Gasoline composition and process for the preparation of alkylfurfuryl ether [P]: WO, 2009077606. 2009-06-25. |
[32] | Yu W J, Tang Y, Mo L Y, Chen P, Lou H, Zheng X M. One-step hydrogenation-esterification of furfural and acetic acid over bifunctional Pd catalysts for bio-oil upgrading [J]. Bioresour. Technol., 2011, 102: 8241-8246. |
[33] | Mallesham B, Sudarsanam P, Raju G, Reddy B M. Design of highly effcient Mo and W-promoted SnO2 solid acids for heterogeneous catalysis: acetalization of bio-glycerol [J]. Green Chem., 2013, 15: 478-489. |
[34] | Melero J A, Vicente G, Morales G, Paniagua M, Bustamante J. Oxygenated compounds derived from glycerol for biodiesel formulation: infiuence on EN 14214 quality parameters [J]. Fuel, 2010, 89: 2011-2018. |
[35] | Roman-Leshkov Y, Barrett C J, Liu Z Y, Dumesic J A. Production of dimethylfuran for liquid fuels from biomass-derived carbohydrates [J]. Nature, 2007, 447: 982-986. |
[36] | Thananatthanachon T, Rauchfuss T B. Efficient production of the liquid fuel 2,5-dimethylfuran from fructose using formic acid as a reagent [J]. Angew. Chem. Int. Ed., 2010, 49: 6616-6618. |
[37] | Gruter G J M, Dautzenberg F. Method for the synthesis of 5-hydroxymethylfurfural ethers and their use [P]: US, 2011082304. 2011-04-07. |
[38] | Che P, Lu F, Zhang J, Huang Y, Nie X, Gao J, Xu J. Catalytic selective etherification of hydroxyl groups in 5-hydro-xymethyl-furfural over H4SiW12O40/MCM-41 nanospheres for liquid fuel production [J]. Bioresour. Technol., 2012, 119: 433-436. |
[39] | Balakrishnan M, Sacia E R, Bell A T. Etherification and reductive etherification of 5-(hydroxymethyl)furfural: 5-(alkoxymethyl) furfurals and 2,5-bis(alkoxymethyl) furans as potential bio-diesel candidates [J]. Green Chem., 2012, 14: 1626-1634. |
[40] | Lanzafame P, Temi D M, Perathoner S, Centi G, Macario A, Aloise A, Giordano G. Etherification of 5-hydroxymethyl-2-furfural (HMF) with ethanol to biodiesel components using mesoporous solid acidic catalysts [J]. Catal. Today, 2011, 175: 435-441. |
[41] | Wang H, Wang Y, Deng T, Chen C, Zhu Y, Hou X. Carbocatalyst in biorefinery: selective etherification of 5-hydroxymethylfurfural to 5,5’(oxy-bis(methylene))bis-2-furfural over graphene oxide [J]. Catal. Commun., 2015, 59: 127-130. |
[42] | Mascal M, Nikitin E B. Direct, high-yield conversion of cellulose into biofuel [J]. Angew. Chem. Int. Ed., 2008, 47: 7924-7926. |
[43] | Liu B, Zhang Z, Deng K. Efficient one-pot synthesis of 5-(ethoxymethyl)furfural from fructose catalyzed by a novel solid catalyst [J]. Ind. Eng. Chem. Res., 2012, 51: 15331-15336. |
[44] | Yang Y, Abu-Omar M M, Hu C W. Heteropolyacid catalyzed conversion of fructose, sucrose, and inulin to 5-ethoxymethylfurfural, a liquid biofuel candidate [J]. Appl. Energy, 2012, 99: 80-84. |
[45] | Ras E J, Maisuls S, Haesakkers P, Gruter G J, Rothenberg G. Selective hydrogenation of 5-ethoxymethylfurfural over alumina-supported heterogeneous catalysts [J]. Adv. Synth. Catal., 2009, 351: 3175-3185. |
[46] | Krystof M, Perez-Sanchez M, de Maria P D. Lipase-catalyzed (trans)esterification of 5-hydroxymethyl furfural and separation from HMF esters using deep-eutectic solvents [J]. ChemSusChem, 2013, 6: 630-634. |
[47] | Rackemann D W, Doherty W O S. The conversion of lignocellulosics to levulinic acid [J]. Biofuels, Bioprod. Bioref., 2011, 5: 198-214. |
[48] | Bozell J J. Connecting biomass and petroleum processing with a chemical bridge [J]. Science, 2010, 329: 522-523. |
[49] | Wright W R H, Palkovits R. Development of heterogeneous catalysts for the conversion of levulinic acid to γ-valerolactone [J]. ChemSusChem, 2012, 5: 1657-1667. |
[50] | Bond J Q, Alonso D M, Wang D, West R M, Dumesic J A. Integrated catalytic conversion of γ-valerolactone to liquid alkenes for transportation fuels [J]. Science, 2010, 327: 1110-1114. |
[51] | Bond J Q, Wang D, Alonso D M, Dumesic J A. Interconversion between γ-valerolactone and pentenoic acid combined with decarboxylation to form butene over silica/alumina [J]. J. Catal., 2011, 281: 290-299. |
[52] | Sen S M, Gurbuz E I, Wettstein S G, Alonso D M, Dumesic J A, Maravelias C T. Production of butene oligomers as transportation fuels using butene for esterification of levulinic acid from lignocellulosic biomass: process synthesis and technoeconomic evaluation [J]. Green Chem., 2012, 14: 3289-3294. |
[53] | Serrano-Ruiz J C, Braden D J, West R M, Dumesic J A. Conversion of cellulose to hydrocarbon fuels by progressive removal of oxygen [J]. Appl. Catal., B, 2010, 100: 184-189. |
[54] | Serrano-Ruiz J C, Wang D, Dumesic J A. Catalytic upgrading of levulinic acid to 5-nonanone [J]. Green Chem., 2010, 12: 574-577. |
[55] | Alonso D M, Bond J Q, Serrano-Ruiz J C, Dumesic J A. Production of liquid hydrocarbon transportation fuels by oligomerization of biomass-derived C9 alkenes [J]. Green Chem., 2010, 12: 992-999. |
[56] | Mascal M, Dutta S, Gandarias I. Hydrodeoxygenation of the angelica lactone dimer, a cellulose-based feedstock: simple, high-yield synthesis of branched C7—C10 gasoline-like hydrocarbons [J]. Angew. Chem. Int. Ed., 2014, 53: 1854-1857. |
[57] | Xin J, Zhang S, Yan D, Ayodele O, Lu X, Wang J. Formation of C—C bonds for the production of bio-alkanes under mild conditions [J]. Green Chem., 2014, 16: 3589-3595. |
[58] | Schwartz T J, van Heiningen A R P, Wheeler M C. Energy densification of levulinic acid by thermal deoxygenation [J]. Green Chem., 2010, 12: 1353-1356. |
[59] | Case P A, van Heiningen A R P, Wheeler M C. Liquid hydrocarbon fuels from cellulosic feedstocks via thermal deoxygenation of levulinic acid and formic acid salt mixtures [J]. Green Chem., 2012, 14: 85-89. |
[60] | Horváth I T, Mehdi H, Fábos V, Boda L, Mika LT. g-Valerolactone—a sustainable liquid for energy and carbon-based chemicals [J]. Green Chem., 2008, 10: 238-242. |
[61] | Bruno T J, Wolk A, Naydich A. Composition-explicit distillation curves for mixtures of gasoline and diesel fuel with γ-valerolactone [J]. Energ Fuel, 2010, 24: 2758-2767. |
[62] | Serrano-Ruiz J C, West R M, Durnesic J A. Catalytic conversion of renewable biomass resources to fuels and chemicals [J]. Annu. Rev. Chem. Biomol., 2010, 1: 79-110 |
[63] | Bui L, Luo H, Gunther W R, Roman-Leshkov Y. Domino reaction catalyzed by zeolites with Brønsted and Lewis acid sites for the production of γ-valerolactone from furfural [J]. Angew. Chem. Int. Ed., 2013, 52: 8022-8025. |
[64] | Heeres H, Handana R, Chunai D, Rasrendra C B, Girisuta B, Heeres H J. Combined dehydration/(transfer)-hydrogenation of C6-sugars (D-glucose and D-fructose) to γ-valerolactone using ruthenium catalysts [J]. Green Chem., 2009, 11: 1247-1255. |
[65] | Pan T, Deng J, Xu Q, Xu Y, Guo Q X, Fu Y. Catalytic conversion of biomass-derived levulinic acid to valerate esters as oxygenated fuels using supported ruthenium catalysts [J]. Green Chem., 2013, 15: 2967-2974. |
[66] | Chan-Thaw C E, Marelli M, Psaro R, Ravasio N, Zaccheria F. New generation biofuels: γ-valerolactone into valeric esters in one pot [J]. RSC Adv., 2013, 3: 1302-1306 |
[67] | Lange J P, Price R, Ayoub P M, Louis J, Petrus L, Clarke L, Gosselink H. Valeric biofuels: a platform of cellulosic transportation fuels [J]. Angew. Chem., Int. Ed., 2010, 49: 4479-4483. |
[68] | Geilen F M A, Engendahl B, Harwardt A, Marquardt W, Klankermayer J, Leitner W. Selective and flexible transformation of biomass-derived platform chemicals by a multifunctional catalytic system [J]. Angew. Chem. Int. Ed., 2010, 49: 5510-5514. |
[69] | Upare P P, Lee J M, Hwang Y K, Hwang D W, Lee J H, Halligudi S B, Hwang J S, Chang J S. Direct hydrocyclization of biomass-derived levulinic acid to 2-methyltetrahydrofuran over nanocomposite copper/silica catalysts [J]. ChemSusChem, 2011, 4: 1749-1752. |
[70] | Du X L, Bi Q Y, Liu Y M, Cao Y, He H Y, Fan K N. Tunable copper-catalyzed chemoselective hydrogenolysis of biomass-derived γ-valerolactone into 1,4-pentanediol or 2-methyltetrahydrofuran [J]. Green Chem., 2012, 14: 935-939. |
[71] | Peng L, Lin L, Li H, Yang Q. Conversion of carbohydrates biomass into levulinate esters using heterogeneous catalysts [J]. Appl. Energy, 2011, 88: 4590-4596. |
[72] | Gurbuz E I, Alonso D M, Bond J Q, Dumesic J A. Reactive extraction of levulinate esters and conversion to γ-valerolactone for production of liquid fuels [J]. ChemSusChem, 2011, 4: 357-361. |
[73] | Hu X, Li C Z. Levulinic esters from the acid-catalysed reactions of sugars and alcohols as part of a bio-refinery [J]. Green Chem., 2011, 13: 1676-1679. |
[74] | Tominaga K, Mori A, Fukushima Y, Shimada S, Sato K. Mixed-acid systems for the catalytic synthesis of methyl levulinate from cellulose [J]. Green Chem., 2011, 13: 810-812. |
[75] | Mao R L V, Zhao Q, Dima G, Petraccone D. New process for the acid-catalyzed conversion of cellulosic biomass (AC3B) into alkyl levulinates and other esters using a unique one-pot system of reaction and product extraction [J]. Catal. Lett., 2011, 141: 271-276. |
[76] | Hayes D J. An examination of biorefining processes, catalysts and challenges [J]. Catal. Today, 2009, 145: 138-151. |
[77] | Klass D L. Biomass for Renewable Energy, Fuels and Chemicals[M]. San Diego: Academic Press, 1998. |
[78] | Yan N, Zhao C, Luo C, Dyson P J, Liu H, Kou Y. One-step conversion of cellobiose to C6-alcohols using a ruthenium nanocluster catalyst [J]. J. Am. Chem. Soc., 2006, 128: 8714-8715. |
[79] | Huber G W, Cortright R D, Dumesic J A. Renewable alkanes by aqueous-phase reforming of biomass-derived oxygenates [J]. Angew. Chem. Int. Ed., 2004, 43: 1549-1551. |
[80] | Kirilin A V, Tokarev A V, Murzina E V, Kustov L M, Mikkola J P, Murzin D Y. Reaction products and transformations of intermediates in the aqueous-phase reforming of sorbitol [J]. ChemSusChem, 2010, 3: 708-718. |
[81] | Beeck B O D, Dusselier M, Geboers J, Holsbeek J, Morre E, Oswald S, Giebeler L, Sels B F. Direct catalytic conversion of cellulose to liquid straight-chain alkanes [J]. Energy Environ. Sci., 2015, 8: 230-240. |
[82] | Kunkes E L, Simonetti D A, West R M, Serrano-Ruiz J C, Gartner C A, Dumesic J A. Catalytic conversion of biomass to monofunctional hydrocarbons and targeted liquid-fuel classes [J]. Science, 2008, 322: 417-421. |
[1] | 郑佳丽, 李志会, 赵新强, 王延吉. 离子液体催化合成2-氰基呋喃反应动力学研究[J]. 化工学报, 2023, 74(9): 3708-3715. |
[2] | 陈佳起, 赵万玉, 姚睿充, 侯道林, 董社英. 开心果壳基碳点的合成及其对Q235碳钢的缓蚀行为研究[J]. 化工学报, 2023, 74(8): 3446-3456. |
[3] | 吴文涛, 褚良永, 张玲洁, 谭伟民, 沈丽明, 暴宁钟. 腰果酚生物基自愈合微胶囊的高效制备工艺研究[J]. 化工学报, 2023, 74(7): 3103-3115. |
[4] | 董茂林, 陈李栋, 黄六莲, 吴伟兵, 戴红旗, 卞辉洋. 酸性助水溶剂制备木质纳米纤维素及功能应用研究进展[J]. 化工学报, 2023, 74(6): 2281-2295. |
[5] | 杨峥豪, 何臻, 常玉龙, 靳紫恒, 江霞. 生物质快速热解下行式流化床反应器研究进展[J]. 化工学报, 2023, 74(6): 2249-2263. |
[6] | 葛泽峰, 吴雨青, 曾名迅, 查振婷, 马宇娜, 侯增辉, 张会岩. 灰化学成分对生物质气化特性的影响规律[J]. 化工学报, 2023, 74(5): 2136-2146. |
[7] | 刘海芹, 李博文, 凌喆, 刘亮, 俞娟, 范一民, 勇强. 羟基-炔点击化学改性半乳甘露聚糖薄膜的制备及性能研究[J]. 化工学报, 2023, 74(3): 1370-1378. |
[8] | 祖凌鑫, 胡荣庭, 李鑫, 陈余道, 陈广林. 木质生物质化学组分的碳释放产物特征和反硝化利用程度[J]. 化工学报, 2023, 74(3): 1332-1342. |
[9] | 郑杰元, 张先伟, 万金涛, 范宏. 丁香酚环氧有机硅树脂的制备及其固化动力学研究[J]. 化工学报, 2023, 74(2): 924-932. |
[10] | 陈健鑫, 朱瑞杰, 盛楠, 朱春宇, 饶中浩. 纤维素基生物质多孔炭的制备及其超级电容器性能研究[J]. 化工学报, 2022, 73(9): 4194-4206. |
[11] | 郝泽光, 张乾, 高增林, 张宏文, 彭泽宇, 杨凯, 梁丽彤, 黄伟. 生物质与催化裂化油浆共热解协同作用研究[J]. 化工学报, 2022, 73(9): 4070-4078. |
[12] | 张东旺, 杨海瑞, 周托, 黄中, 李诗媛, 张缦. 生物质锅炉对流受热面积灰冷态模拟实验研究[J]. 化工学报, 2022, 73(8): 3731-3738. |
[13] | 刘新华, 韩振南, 韩健, 梁斌, 张楠, 胡善伟, 白丁荣, 许光文. 基于热解与燃烧反应重构的低NO x 解耦燃烧原理与技术[J]. 化工学报, 2022, 73(8): 3355-3368. |
[14] | 黄丽菁, 黄继娇, 李鹏辉, 刘芷诺, 蒋康杰, 吴文娟. 木质素羟丙基磺甲基化改性及其对纤维素酶水解的影响[J]. 化工学报, 2022, 73(7): 3232-3239. |
[15] | 张劢, 田瑶, 郭之旗, 王叶, 窦广进, 宋浩. 光催化-生物杂合系统设计优化用于燃料和化学品绿色合成[J]. 化工学报, 2022, 73(7): 2774-2789. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||