[1] |
Fenton. Oxidation of tartaric acid in presence of iron [J]. J. Chem. Soc., 1894, 65: 899-910.
|
[2] |
Eisenhauer H R. Oxidation of phenolic wastes [J]. Water Pollution Control Federation, 1964, 9(36): 1116-1128.
|
[3] |
Fajerwerg K D H. Wet oxidation of phenol by hydrogen peroxide using heterogeneous catalysis Fe-ZSM-5: a promising catalyst [J]. Appl. Catal. B, 1996, 10(4): L229-L235.
|
[4] |
Haber F, Weiss J. Über die katalyse des hydroperoxydes [J]. Naturwissenschaften, 1932, 20(51): 948-950.
|
[5] |
Bray W C, Gorin M H. Ferrylion a compound of tetravalent iron [J]. J. Am. Chem. Soc., 1932, 54(5): 2124-2125.
|
[6] |
Ensing B, Buda F, Baerends E J. Fenton-like chemistry in water oxidation catalysis by Fe(Ⅲ) and H2O2 [J]. J. Phys. Chem. A, 2003, 107(30): 5722-5731.
|
[7] |
Hartmann M, Kullmann S, Keller H. Wastewater treatment with heterogeneous Fenton-type catalysts based on porous materials [J]. J. Mater. Chem., 2010, 20(41): 9002-9017.
|
[8] |
Costa R C C, Moura F C C, Ardisson J D, et al. Highly active heterogeneous Fenton-like systems based on Fe0/Fe3O4 composites prepared by controlled reduction of iron oxides [J]. Appl. Catal. B, 2008, 83(1/2): 131-139.
|
[9] |
Munoz M, de Pedro Z M, Casas J A, et al. Preparation of magnetite-based catalysts and their application in heterogeneous Fenton oxidation: a review [J]. Appl. Catal. B, 2015, 176/177: 249-265.
|
[10] |
Satishkumar G, Landau M V, Buzaglo T, et al. Fe/SiO2 heterogeneous Fenton catalyst for continuous catalytic wet peroxide oxidation prepared in-situ by grafting of iron released from LaFeO3 [J]. Appl. Catal. B, 2013, 138/139: 276-284.
|
[11] |
Yang X, Tian P, Zhang X, et al. The generation of hydroxyl radicals by hydrogen peroxide decomposition on FeOCl/SBA-15 catalysts for phenol degradation [J]. AIChE J., 2015, 61(1): 166-176.
|
[12] |
Quintanilla A, García-Rodríguez S, Domínguez C M, et al. Supported gold nanoparticle catalysts for wet peroxide oxidation [J]. Appl. Catal. B, 2012, 111/112: 81-89.
|
[13] |
Lee Y. Hydrogen peroxide decomposition over Ln1-xAxMnO3 (Ln=La or Nd and A=K or Sr) perovskites [J]. Appl. Catal. A, 2001, 215(1/2): 245-256.
|
[14] |
Li X, Liu X, Xu L, et al. Highly dispersed Pd/PdO/Fe2O3 nanoparticles in SBA-15 for Fenton-like processes: confinement and synergistic effects [J]. Appl. Catal. B, 2015, 165: 79-86.
|
[15] |
Luo L, Dai C, Zhang A, et al. A facile strategy for enhancing FeCu bimetallic promotion for catalytic phenol oxidation [J]. Catal. Sci. Technol., 2015, 5: 3159-3165.
|
[16] |
Wei G, Liang X, He Z, et al. Heterogeneous activation of oxone by substituted magnetites Fe3-xMxO4 (Cr, Mn, Co, Ni) for degradation of acid orange II at neutral pH [J]. J. Mol. Catal. A, 2015, 398: 86-94.
|
[17] |
Liu P, He S, Wei H, et al. Catalytic wet peroxide oxidation of m-cresol over Fe-Ce/Al2O3 catalyst [J]. Chem. Pap., 2015, 69(6): 827-838.
|
[18] |
Wang Y, Zhao H, Zhao G. Iron-copper bimetallic nanoparticles embedded within ordered mesoporous carbon as effective and stable heterogeneous Fenton catalyst for the degradation of organic contaminants [J]. Appl. Catal. B, 2015, 164: 396-406.
|
[19] |
Chen X, Ma C, Li X, et al. Hierarchical Bi2CuO4 microspheres: hydrothermal synthesis and catalytic performance in wet oxidation of methylene blue [J]. Catal. Commun., 2009, 10(6): 1020-1024.
|
[20] |
Navalon S, Alvaro M, Garcia H. Heterogeneous Fenton catalysts based on clays, silicas and zeolites [J]. Appl. Catal. B, 2010, 99(1/2): 1-26.
|
[21] |
Chen A, Ma X, Sun H. Decolorization of KN-R catalyzed by Fe-containing Y and ZSM-5 zeolites [J]. J. Hazard. Mater., 2008, 156(1/2/3): 568-575.
|
[22] |
Wang Y, Sun H, Duan X, et al. A new magnetic nano zero-valent iron encapsulated in carbon spheres for oxidative degradation of phenol [J]. Appl. Catal. B, 2015, 172/173: 73-81.
|
[23] |
Kim S, Ginsbach J W, Lee J Y, et al. Amine oxidative n-dealkylation via cupric hydroperoxide Cu-OOH homolytic cleavage followed by site-specific Fenton chemistry [J]. J. Am. Chem. Soc., 2015, 137(8): 2867-2874.
|
[24] |
Civan F, Özaltun DH, K?pçak E, et al. The treatment of landfill leachate over Ni/Al2O3 by supercritical water oxidation [J]. J. Supercrit. Fluids, 2015, 100: 7-14.
|
[25] |
Costa D A S, Oliveira A A S, de Souza P P, et al. The combined effect between Co and carbon nanostructures grown on cordierite monoliths for the removal of organic contaminants from the liquid phase [J]. New. J. Chem., 2015, (39): 1438-1444.
|
[26] |
Qu J, Shi L, He C, et al. Highly efficient synthesis of graphene/MnO2 hybrids and their application for ultrafast oxidative decomposition of methylene blue[J]. Carbon, 2014, 66: 485-492.
|
[27] |
Zhong Y, Liang X, He Z, et al. The constraints of transition metal substitutions (Ti, Cr, Mn, Co and Ni) in magnetite on its catalytic activity in heterogeneous Fenton and UV/Fenton reaction: from the perspective of hydroxyl radical generation [J]. Appl. Catal. B, 2014, 150/151: 612-618.
|
[28] |
Segura Y, Martínez F, Melero J A, et al. Enhancement of the advanced Fenton process (Fe0/H2O2) by ultrasound for the mineralization of phenol [J]. Appl. Catal. B, 2012, 113/114: 100-106.
|
[29] |
Chu L, Wang J, Dong J, et al. Treatment of coking wastewater by an advanced Fenton oxidation process using iron powder and hydrogen peroxide [J]. Chemosphere, 2012, 86(4): 409-414.
|
[30] |
Bokare A D, Choi W. Zero-valent aluminum for oxidative degradation of aqueous organic pollutants [J]. Environ. Sci. Technol., 2009, 43(18): 7130-7135.
|
[31] |
Zhu M, Diao G. Synthesis of porous Fe3O4 nanospheres and its application for the catalytic degradation of xylenol orange [J]. J. Phys. Chem. C, 2011, 115(39): 18923-18934.
|
[32] |
Hou L, Zhang Q, Jérôme F, et al. Shape-controlled nanostructured magnetite-type materials as highly efficient Fenton catalysts [J]. Appl. Catal. B, 2014, 144: 739-749.
|
[33] |
Luo L, Dai C, Zhang A, et al. Facile synthesis of zeolite-encapsulated iron oxide nanoparticles as superior catalysts for phenol oxidation [J]. RSC Adv., 2015, 5(37): 29509-29512.
|
[34] |
Hermanek M, Zboril R, Medrik I, et al. Catalytic efficiency of iron(Ⅲ) oxides in decomposition of hydrogen peroxide: competition between the surface area and crystallinity of nanoparticles [J]. J. Am. Chem. Soc., 2007, 129(35): 10929-10936.
|
[35] |
Moura F, Oliveira G, Araujo M, et al. Highly reactive species formed by interface reaction between Fe0-iron oxides particles: an efficient electron transfer system for environmental applications [J]. Appl. Catal. A, 2006, 307(2): 195-204.
|
[36] |
Yang Z, Zhang Y, Zhang W, et al. Nanorods of manganese oxides: synthesis, characterization and catalytic application [J]. J. Solid. State. Chem., 2006, 179(3): 679-684.
|
[37] |
Rhadfi T, Piquemal J, Sicard L, et al. Polyol-made Mn3O4 nanocrystals as efficient Fenton-like catalysts [J]. Appl. Catal. A, 2010, 386(1/2): 132-139.
|
[38] |
Zhan Y, Li H, Chen Y. Copper hydroxyphosphate as catalyst for the wet hydrogen peroxide oxidation of azo dyes [J]. J. Hazard. Mater., 2010, 180(1/2/3): 481-485.
|
[39] |
Zhan Y, Zhou X, Fu B, et al. Catalytic wet peroxide oxidation of azo dye (direct blue 15) using solvothermally synthesized copper hydroxide nitrate as catalyst [J]. J. Hazard. Mater., 2011, 187(1/2/3): 348-354.
|
[40] |
Chen F, Shen X, Wang Y, et al. CeO2/H2O2 system catalytic oxidation mechanism study via a kinetics investigation to the degradation of acid orange 7 [J]. Appl. Catal. B, 2012, 121/122: 223-229.
|
[41] |
Jablonski J. High temperature reduction with hydrogen, phase composition, and activity of cobalt/silica catalysts [J]. J. Catal., 2003, 220(1): 146-160.
|
[42] |
Liu Y, Sun D. Effect of CeO2 doping on catalytic activity of Fe2O3/γ-Al2O3 catalyst for catalytic wet peroxide oxidation of azo dyes [J]. J. Hazard. Mater., 2007, 143(1/2): 448-454.
|
[43] |
Wang Y, Zhao H, Li M, et al. Magnetic ordered mesoporous copper ferrite as a heterogeneous Fenton catalyst for the degradation of imidacloprid [J]. Appl. Catal. B, 2014, 147: 534-545.
|
[44] |
Lu A, Salabas E L, Schüth F. Magnetic nanoparticles: synthesis, protection, functionalization, and application [J]. Angew. Chem. Int. Ed., 2007, 46(8): 1222-1244.
|
[45] |
Yan Y, Jiang S, Zhang H. Efficient catalytic wet peroxide oxidation of phenol over Fe-ZSM-5 catalyst in a fixed bed reactor [J]. Sep. Purif. Technol., 2014, 133: 365-374.
|
[46] |
Fortuny A, Font J, Fabregat A. Wet air oxidation of phenol using active carbon as catalyst [J]. Appl. Catal. B, 1998, 19: 166-173.
|
[47] |
Chang F, Xie Y, Li C, et al. A facile modification of g-C3N4 with enhanced photocatalytic activity for degradation of methylene blue [J]. Appl. Surf. Sci., 2013, 280: 967-974.
|