化工学报 ›› 2016, Vol. 67 ›› Issue (10): 4029-4039.DOI: 10.11949/j.issn.0438-1157.20160154
肖武, 张毅, 吕俊锋, 李中华, 贺高红
收稿日期:
2016-02-02
修回日期:
2016-07-08
出版日期:
2016-10-05
发布日期:
2016-10-05
通讯作者:
贺高红
基金资助:
国家自然科学基金项目(21206014,21125628,21527812);国家留学基金项目(201506060258);中央高校基本科研业务费专项基金项目(DUT14LAB14);中国石油化工股份有限公司资助项目(X514001);教育部长江学者奖励计划项目。
XIAO Wu, ZHANG Yi, LÜ Junfeng, LI Zhonghua, HE Gaohong
Received:
2016-02-02
Revised:
2016-07-08
Online:
2016-10-05
Published:
2016-10-05
Supported by:
supported by the National Natural Science Foundation of China (21206014, 21125628, 21527812), the Project of China Scholarship Council (201506060258), the Fundamental Research Funds for the Central Universities (DUT14LAB14), the Project of the China Petroleum and Chemical Corporation (X514001) and the Changjiang Scholars Program.
摘要:
随着石化生产装置日趋大型化、复杂化和一体化,过程系统中的操作单元之间以及物料流、能量流和信息流之间的组合关联复杂度不断增加,P-图理论通过公理约束生成严格超结构,可减少冗余结构的产生,得到了越来越广泛的应用。首先概述了P-图理论的数学定义、基本公理和求解算法及工作流程等,通过案例介绍了P-图理论的建模框架和图形表示。然后系统总结了自1992年P-图理论提出以来,其在分离网络综合、反应路径识别、换热网络综合等传统过程网络综合的应用,以及近年来在工艺路w线选择、供应链与调度优化等新兴研究领域的扩展。最后,比较分析了P-图理论与数学规划法的各自优势,提出了利用P-图求解非线性问题的改进思路,展望了P-图理论未来的研究方向,包括考虑经济、环境等因素的多目标优化,以及P-图与数学规划相结合,高效处理复杂大规模非线性规划问题等。
中图分类号:
肖武, 张毅, 吕俊锋, 李中华, 贺高红. P-图理论在过程网络综合中的应用研究进展[J]. 化工学报, 2016, 67(10): 4029-4039.
XIAO Wu, ZHANG Yi, LÜ Junfeng, LI Zhonghua, HE Gaohong. Progress of research and application of P-graph theory in process network synthesis[J]. CIESC Journal, 2016, 67(10): 4029-4039.
[1] | SARGENT R. Process systems engineering:a retrospective view with questions for the future[J]. Computers and Chemical Engineering, 2005, 29(6):1237-1241. |
[2] | FRIEDLER F, FAN L T, IMREH B. Process network synthesis:problem definition[J]. Networks, 1998, 31(2):119-124. |
[3] | 姚平经, 杨友麒. 过程系统工程[M]. 上海:华东理工大学出版社, 2009. YAO P J,YANG Y L. Process Systems Engineering[M]. Shanghai:East China University of Science and Technology Press, 2009. |
[4] | GROSSMANN I E, CABALLERO J A, YEOMANS H. Mathematical programming approaches to the synthesis of chemical process systems[J]. Korean Journal of Chemical Engineering, 1999, 16(4):407-426. |
[5] | 李萍, 华贲. 过程系统综合集成优化法的研究进展[J]. 广东化工, 2005, 32(1):80-83. LI P, HUA B. Development on optimizing approaches for process system integration and synthesis[J]. Guangdong Chemical Industry, 2005, 32(1):80-83. |
[6] | GROSSMANN I E. Mixed-integer programming approach for the synthesis of integrated process flowsheets[J]. Computers and Chemical Engineering, 1985, 9(5):463-482. |
[7] | BAGAJEWICZ M J, PHAM R, MANOUSIOUTHAKIS V. On the state space approach to mass/heat exchanger network design[J]. Chemical Engineering Science, 1998, 53(14):2595-2621. |
[8] | GROSSMANN I E, TRESPALACIOS F. Systematic modeling of discrete-continuous optimization models through generalized disjunctive programming[J]. AIChE Journal, 2013, 59(9):3276-3295. |
[9] | VARGA V, HECKL I, FRIEDLER F, et al. PNS solutions:a P-graph based programming framework for process network synthesis[J]. Chemical Engineering Transactions, 2010, 21:1387-1392. |
[10] | TICK J. P-graph-based workflow modelling[J]. Acta Polytechnica Hungarica, 2007, 4(1):75-88. |
[11] | FRIEDLER F, TARJAN K, HUANG Y W, et al. Graph-theoretic approach to process synthesis:polynomial algorithm for maximal structure generation[J]. Computers and Chemical Engineering, 1993, 17:929-942. |
[12] | FRIEDLER F, VARGA J B, FAN L T. Decision-mapping:a tool for consistent and complete decisions in process synthesis[J]. Chemical Engineering Science, 1995, 50(11):1755-1768. |
[13] | 许晓慧, 孙娜, 赵立新. 基于P-图理论的组合算法合成分离过程严格超结构[J]. 计算机与应用化学, 2014, 31(12):1496-1502. XU X H, SUN N, ZHAO L X. Rigorous superstructure generation of separation systems by the P-graph-based combinatorial algorithm[J]. Computer and Applied Chemistry, 2014, 31(12):1496-1502. |
[14] | VARGA V, HECKL I, FRIEDLER F, et al. PNS solutions:a P-graph based programming framework for process network synthesis[J]. Chemical Engineering Transactions, 2010, 21:1387-1392. |
[15] | 许晓慧, 宋海华, 于兰平, 等. 加速分支定界算法在化工过程合成中的应用[J]. 计算机与应用化学, 2011, 28(4):451-457. XU X H, SONG H H, YU L P, et al. Application of accelerated branch and bound in process synthesis of chemical engineering[J]. Computer and Applied Chemistry, 2011, 28(4):451-457. |
[16] | VARGA V, HECKL I, FRIEDLER F, et al. PNS solutions:a P-graph based programming framework for process network synthesis[J]. Chemical Engineering Transactions, 2010, 21:1387-1392. |
[17] | ALMASI D, IMREH C, KOVACS T, et al. Heuristic algorithms for the robust PNS problem[J]. Acta Polytechnica Hungarica, 2014, 11(4):169-181. |
[18] | KOVACS Z, FRIEDLER F, FAN L T. Recycling in a separation process structure[J]. AIChE Journal, 1993, 39(6):1087-1089. |
[19] | KOVACS Z, FRIEDLER F, FAN L T. Parametric study of separation network synthesis:extreme properties of optimal structures[J]. Computers and Chemical Engineering, 1995, 19:107-112. |
[20] | KOVACS Z, ERCSEY Z, FRIEDLER F, et al. Exact super-structure for the synthesis of separation-networks with multiple feed-streams and sharp separators[J]. Computers and Chemical Engineering, 1999, 23:S1007-S1010. |
[21] | HECKL I, FRIEDLER F, FAN L T. Solution of separation-network synthesis problems by the P-graph methodology[J]. Computers and Chemical Engineering, 2010, 34(5):700-706. |
[22] | BERTOK B, BARANY M, FRIEDLER F. Generating and analyzing mathematical programming models of conceptual process design by P-graph software[J]. Industrial and Engineering Chemistry Research, 2012, 52(1):166-171. |
[23] | FENG G, FAN L T, FRIEDLER F. Synthesizing alternative sequences via a P-graph-based approach in azeotropic distillation systems[J]. Waste Management, 2000, 20(8):639-643. |
[24] | FENG G, FAN L T, SEIB P A, et al. A graph-theoretic method for the algorithmic synthesis of azeotropic-distillation systems[J]. Industrial and Engineering Chemistry Research, 2003, 42(15):3602-3611. |
[25] | DOUGLAS J M. A hierarchical decision procedure for process synthesis[J]. AIChE Journal, 1985, 31(3):353-362. |
[26] | SEO H, LEE D Y, PARK S, et al. Graph-theoretical identification of pathways for biochemical reactions[J]. Biotechnology Letters, 2001, 23(19):1551-1557. |
[27] | FAN L T, BERTOK B, FRIEDLER F, et al. Mechanisms of ammonia-synthesis reaction revisited with the aid of a novel graph-theoretic method of determining candidate mechanisms in deriving the rate law of a catalytic reaction[J]. Hungarian Journal of Industrial Chemistry, 2001, 29(1):71-80. |
[28] | FAN L T, BERTOK B, FRIEDLER F. A graph-theoretic method to identify candidate mechanisms for deriving the rate law of a catalytic reaction[J]. Computers and Chemistry, 2002, 26(3):265-292. |
[29] | FAN L T, LIN Y C, SHAFIE S, et al. Graph-theoretic and energetic exploration of catalytic pathways of the water-gas shift reaction[J]. Journal of the Chinese Institute of Chemical Engineers, 2008, 39(5):467-473. |
[30] | LIN Y C, FAN L T, SHAFIE S, et al. Generation of light hydrocarbons through Fischer-Tropsch synthesis:identification of potentially dominant catalytic pathways via the graph-theoretic method and energetic analysis[J]. Computers and Chemical Engineering, 2009, 33(6):1182-1186. |
[31] | LIN Y C, FAN L T, SHAFIE S, et al. Graph-theoretic approach to the catalytic-pathway identification of methanol decomposition[J]. Computers and Chemical Engineering, 2010, 34(5):821-824. |
[32] | FAN L T, LIN Y C, SHAFIE S, et al. Exhaustive identification of feasible pathways of the reaction catalyzed by a catalyst with multiactive sites via a highly effective graph-theoretic algorithm:application to ethylene hydrogenation[J]. Industrial and Engineering Chemistry Research, 2012, 51(6):2548-2552. |
[33] | YUN C, KIM T Y, ZHANG T, et al. Determination of the thermodynamically dominant metabolic pathways[J]. Industrial and Engineering Chemistry Research, 2012, 52(1):222-229. |
[34] | NAGY A B, ADONYI R, HALASZ L, et al. Integrated synthesis of process and heat exchanger networks:algorithmic approach[J]. Applied Thermal Engineering, 2001, 21(13):1407-1427. |
[35] | HECKL I, FRIEDLER F, FAN L T. Integrated synthesis of optimal separation and heat exchanger networks involving separations based on various properties[J]. Heat Transfer Engineering, 2005, 26(5):25-41. |
[36] | FRIEDLER F, VARBANOV P, KLEMEŠ J. Advanced HENs design for multi-period operation using P-graph[J]. Chemical Engineering Transactions, 2009, 18(1):457-462. |
[37] | HALASZ L, POVODEN G, NARODOSLAWSKY M. Sustainable processes synthesis for renewable resources[J]. Resources Conservation and Recycling, 2005, 44(3):293-307. |
[38] | LAM H L, KLEMES J J, VARBANOV P S, et al. P-graph synthesis of open-structure biomass networks[J]. Industrial and Engineering Chemistry Research, 2012, 52(1):172-180. |
[39] | HALASZ L, EDERZ M, SANDORZ N, et al. Optimal integration of sustainable technologies in industrial parks[J]. Chemical Engineering Transactions, 2010, 19:43-48. |
[40] | KETTL K H, NIEMETZ N, SANDOR N, et al. Regional optimizer sustainable energy technology network solutions for regions[J]. Computer Aided Chemical Engineering, 2011, 29:1959-1963. |
[41] | VARBANOV P, FRIEDLER F. P-graph methodology for cost-effective reduction of carbon emissions involving fuel cell combined cycles[J]. Applied Thermal Engineering, 2008, 28(16):2020-2029. |
[42] | TAN R R, CAYAMANDA C D, AVISO K B. P-graph approach to optimal operational adjustment in polygeneration plants under conditions of process inoperability[J]. Applied Energy, 2014, 135:402-406. |
[43] | TAN R R, BENJAMIN M F D, CAYAMANDA C D, et al. P-graph approach to optimizing crisis operations in an industrial complex[J]. Industrial and Engineering Chemistry Research, 2016, 55(12):3467-3477. |
[44] | LOSADA J P, HECKL I, BERTOK B, et al. Process network synthesis for benzaldehyde production:P-graph approach[J]. Chemical Engineering Transactions, 2015, 45:1369-1374. |
[45] | SHEN H B, HOOI H B, LOONG L H, et al. Synthesis of multiple biomass corridor via decomposition approach:a P-graph application[J]. Journal of Cleaner Production, 2016, 130:45-57. |
[46] | XU X, ZHU C, MA Y, et al. A robust combinatorial approach based on P-graph for superstructure generation in downstream bioprocesses[J]. Brazilian Journal of Chemical Engineering, 2015, 32(1):259-267. |
[47] | HECKL I, HALASZ L, SZLAMA A, et al. Process synthesis involving multi-period operations by the P-graph framework[J]. Computers and Chemical Engineering, 2015, 83:157-164. |
[48] | TAN R R, AVISO K B. An extended P-graph approach to process network synthesis for multi-period operations[J]. Computers and Chemical Engineering, 2016, 85:40-42. |
[49] | FAN L T, KIM Y, YUN C, et al. Design of optimal and near-optimal enterprise-wide supply networks for multiple products in the process industry[J]. Industrial and Engineering Chemistry Research, 2009, 48(4):2003-2008. |
[50] | KIM Y, FAN L T, YUN C, et al. Graph-theoretic approach to optimal synthesis of supply networks:distribution of gasoline from a refinery[J]. Computer Aided Chemical Engineering, 2008, 25:247-252. |
[51] | BERTOK B, KALAUZ K, SULE Z, et al. Combinatorial algorithm for synthesizing redundant structures to increase reliability of supply chains:application to biodiesel supply[J]. Industrial and Engineering Chemistry Research, 2012, 52(1):181-186. |
[52] | HECKL I, CABEZAS H, FRIEDLER F. Designing sustainable supply chains in the energy-water-food nexus by the P-graph methodology[J]. Chemical Engineering Transactions, 2015, 45:1351-1356. |
[53] | NG R T L, TAN R R, HASSIM M H. P-graph methodology for bi-objective optimisation of bioenergy supply chains:economic and safety perspectives[J]. Chemical Engineering Transactions, 2015, 45:1357-1362. |
[54] | TICK J, KOVACS Z. P-graph based workflow synthesis[C]//International Conference on Intelligent Engineering Systems. Miami, 2008:249-253. |
[55] | BARANY M, BERTOK B, KOVACS Z, et al. Optimization software for solving vehicle assignment problems to minimize cost and environmental impact of transportation[J]. Chemical Engineering Transactions, 2010, 21:499-504. |
[56] | BARANY M, BERTOK B, KOVACS Z, et al. Solving vehicle assignment problems by process-network synthesis to minimize cost and environmental impact of transportation[J]. Clean Technologies and Environmental Policy, 2011, 13(4):637-642. |
[57] | ADONYI R, HECKL I, OLTI F. Scheduling of bus maintenance by the P-graph methodology[J]. Optimization and Engineering, 2013, 14(4):565-574. |
[1] | 杨欣, 王文, 徐凯, 马凡华. 高压氢气加注过程中温度特征仿真分析[J]. 化工学报, 2023, 74(S1): 280-286. |
[2] | 宋嘉豪, 王文. 斯特林发动机与高温热管耦合运行特性研究[J]. 化工学报, 2023, 74(S1): 287-294. |
[3] | 连梦雅, 谈莹莹, 王林, 陈枫, 曹艺飞. 地下水预热新风一体化热泵空调系统制热性能研究[J]. 化工学报, 2023, 74(S1): 311-319. |
[4] | 金正浩, 封立杰, 李舒宏. 氨水溶液交叉型再吸收式热泵的能量及分析[J]. 化工学报, 2023, 74(S1): 53-63. |
[5] | 王浩, 王振雷. 基于自适应谱方法的裂解炉烧焦模型化简策略[J]. 化工学报, 2023, 74(9): 3855-3864. |
[6] | 陈哲文, 魏俊杰, 张玉明. 超临界水煤气化耦合SOFC发电系统集成及其能量转化机制[J]. 化工学报, 2023, 74(9): 3888-3902. |
[7] | 齐聪, 丁子, 余杰, 汤茂清, 梁林. 基于选择吸收纳米薄膜的太阳能温差发电特性研究[J]. 化工学报, 2023, 74(9): 3921-3930. |
[8] | 李科, 文键, 忻碧平. 耦合蒸气冷却屏的真空多层绝热结构对液氢储罐自增压过程的影响机制研究[J]. 化工学报, 2023, 74(9): 3786-3796. |
[9] | 何松, 刘乔迈, 谢广烁, 王斯民, 肖娟. 高浓度水煤浆管道气膜减阻两相流模拟及代理辅助优化[J]. 化工学报, 2023, 74(9): 3766-3774. |
[10] | 邢雷, 苗春雨, 蒋明虎, 赵立新, 李新亚. 井下微型气液旋流分离器优化设计与性能分析[J]. 化工学报, 2023, 74(8): 3394-3406. |
[11] | 陈国泽, 卫东, 郭倩, 向志平. 负载跟踪状态下的铝空气电池堆最优功率点优化方法[J]. 化工学报, 2023, 74(8): 3533-3542. |
[12] | 李锦潼, 邱顺, 孙文寿. 煤浆法烟气脱硫中草酸和紫外线强化煤砷浸出过程[J]. 化工学报, 2023, 74(8): 3522-3532. |
[13] | 刘文竹, 云和明, 王宝雪, 胡明哲, 仲崇龙. 基于场协同和耗散的微通道拓扑优化研究[J]. 化工学报, 2023, 74(8): 3329-3341. |
[14] | 于旭东, 李琪, 陈念粗, 杜理, 任思颖, 曾英. 三元体系KCl + CaCl2 + H2O 298.2、323.2及348.2 K相平衡研究及计算[J]. 化工学报, 2023, 74(8): 3256-3265. |
[15] | 张曼铮, 肖猛, 闫沛伟, 苗政, 徐进良, 纪献兵. 危废焚烧处理耦合有机朗肯循环系统工质筛选与热力学优化[J]. 化工学报, 2023, 74(8): 3502-3512. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||