[1] |
MALEK J. The kinetic analysis of non-isothermal data[J]. Thermochimica Acta, 1992, 200(92): 257-269.
|
[2] |
SBIRRAZZUOLI N. Is the Friedman method applicable to transformations with temperature dependent reaction heat?[J]. Macromolecular Chemistry and Physics, 2007, 208(14): 1592-1597.
|
[3] |
OZAWA T. A new method of analyzing thermogravimetric data[J]. Bulletin of the Chemical Society of Japan, 1965, 38(11): 1881-1886.
|
[4] |
FLYNN J H, WALL L A. General treatment of the thermogravimetry of polymers[J]. Journal of Research of the National Bureau of Standards- Physics & Chemistry, 1966, 70A(6): 487-522.
|
[5] |
VYAZOVKIN S, BURNHAM A K, CRIADO J M, et al. ICTAC kinetics committee recommendations for performing kinetic computations on thermal analysis data[J]. Thermochimica Acta, 2011, 520(1/2): 1-19.
|
[6] |
VYAZOVKIN S. Modification of the integral isoconversional method to account for variation in the activation energy[J]. Journal of Computational Chemistry, 2001, 22(2): 178-183.
|
[7] |
BUDRUGEAC P. Differential non-linear isoconversional procedure for evaluating the activation energy of non-isothermal reactions[J]. Journal of Thermal Analysis and Calorimetry, 2002, 68(1): 131-139.
|
[8] |
PEREZMAQUEDA L A, CRIADO J M, GOTOR F J, et al. Advantages of combined kinetic analysis of experimental data obtained under any heating profile[J]. Journal of Physical Chemistry A, 2002, 106(12): 2862-2868.
|
[9] |
PEREZMAQUEDA L A, SANCHEZJIMENEZ P E, CRIADO J M. Combined kinetic analysis of solid-state reactions: a powerful tool for the simultaneous determination of kinetic parameters and the kinetic model without previous assumptions on the reaction mechanism[J]. Journal of Physical Chemistry A, 2006, 110(45): 12456-62.
|
[10] |
WU K W, HOU H Y, SHU C M. Thermal phenomena studies for dicumyl peroxide at various concentrations by DSC[J]. Journal of Thermal Analysis & Calorimetry, 2006, 83(1): 41-44.
|
[11] |
SOMMA I D, MAROTTA R, ANDREOZZI R, et al. Dicumylperoxidethermal decomposition in cumene: development of a kinetic model[J]. Industrial & Engineering Chemistry Research, 2012, 51(22): 601-609.
|
[12] |
LV J Y, CHEN L P, CHEN W H, et al. Kinetic analysis and self-accelerating decomposition temperature (SADT) of dicumylperoxide[J]. Thermochimica Acta, 2013, 571(20): 60-63.
|
[13] |
WU S H, SHYU M L, YETPOLE I, et al. Evaluation of runaway reaction for dicumyl peroxide in a batch reactor by DSC and VSP2[J]. Journal of Loss Prevention in the Process Industries, 2009, 22(6): 721-727.
|
[14] |
TALOUBA I B, BALLAND L, MOUHAB N, et al. Kinetic parameter estimation for decomposition of organic peroxides by means of DSC measurements[J]. Journal of Loss Prevention in the Process Industries, 2011, 24(4): 391-396.
|
[15] |
ZANG N. Thermal stability analysis of dicumylperoxide[J]. Lecture Notes in Electrical Engineering, 2012, 137: 279-286.
|
[16] |
ASKONAS C F, BURELBACH J P, LEUNG J C. The versatile VSP2: a tool for adiabatic thermal analysis and vent sizing applications[C]//28th Annual North American Thermal Analysis Society (NATAS) Conference. Orlando, Florida, 2000: 4-6.
|
[17] |
WU S H, WANG Y W, WU T C, et al. Evaluation of thermal hazards for dicumyl peroxide by DSC and VSP2[J]. Journal of Thermal Analysis & Calorimetry, 2008, 93(1): 189-194.
|
[18] |
HOU H Y, LIAO T S, DUH Y S, et al. Thermal hazard studies for dicumyl peroxide by DSC and TAM[J]. Journal of Thermal Analysis & Calorimetry, 2006, 83(1): 167-171.
|
[19] |
WU K W, HOU H Y, SHU C M. Thermal phenomena studies for dicumyl peroxide at various concentrations by DSC[J]. Journal of Thermal Analysis & Calorimetry, 2006, 83(1): 41-44.
|
[20] |
LU K T, CHU Y C, CHEN T C, et al. Investigation of the decomposition reaction and dust explosion characteristics of crystalline dicumylperoxide[J]. Journal of Hazardous Materials, 2008, 161(1): 246-56.
|
[21] |
VALDES O J R, MORENO V C, WALDRAM S P, et al. Experimental sensitivity analysis of the runaway severity of dicumyl peroxide decomposition using adiabatic calorimetry[J]. Thermochimica Acta, 2015, 617(4): 510-513.
|
[22] |
FRIEDMAN H L. Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic[J]. Journal of Polymer Science Part C Polymer Symposia, 2007, 6(1): 183-195.
|
[23] |
VYAZOVKIN S. Kinetic concepts of thermally stimulated reactions in solids[J]. International Reviews in Physical Chemistry, 2010, 19(1): 45-60.
|
[24] |
VYAZOVKIN S. On the phenomenon of variable activation energy for condensed phase reactions[J]. New Journal of Chemistry, 2000, 24(11): 913-917.
|
[25] |
VYAZOVKIN S. Chapter 13-Isoconversional Kinetics//Handbook of Thermal Analysis & Calorimetry[M]. Amsterdam: Elsevier, 2008, 5(8): 503-538.
|
[26] |
VYAZOVKIN S, SBIRRAZZUOLI N. Isoconversional kinetic analysis of thermally stimulated processes in polymers[J]. Macromolecular Rapid Communications, 2006, 27(18): 1515-1532.
|
[27] |
KOSSOY A, KOLUDAROVA E. Specific features of kinetics evaluation in calorimetric studies of runaway reactions[J]. Journal of Loss Prevention in the Process Industries, 1995, 8(4): 229-235.
|
[28] |
RODUIT B, HARTMANN M, FOLLY P, et al. Prediction of thermal stability of materials by modified kinetic and model selection approaches based on limited amount of experimental points[J]. Thermochimica Acta, 2014, 579(5): 31-39.
|
[29] |
RODUIT B, HARTMANN M, FOLLY P, et al. Thermal decomposition of AIBN, Part B: Simulation of SADT value based on DSC results and large scale tests according to conventional and new kinetic merging approach[J]. Thermochimica Acta, 2015, 355: 6-24.
|
[30] |
MOUKHINA E. Thermal decomposition of AIBN, Part C: SADT calculation of AIBN based on DSC experiments[J]. Thermochimica Acta, 2015, 621: 25-35. Kinetic analysis and self-accelerating decomposition temperature (SADT) of dicumylperoxide[J]. ThermochimicaActa, 2013, 571(20):60-63.
|
[13] |
WU S H, SHYU M L, YETPOLE I, et al. Evaluation of runaway reaction for dicumyl peroxide in a batch reactor by DSC and VSP2[J]. Journal of Loss Prevention in the Process Industries, 2009, 22(6):721-727.
|
[14] |
TALOUBA I B, BALLAND L, MOUHAB N, et al. Kinetic parameter estimation for decomposition of organic peroxides by means of DSC measurements[J]. Journal of Loss Prevention in the Process Industries, 2011, 24(4):391-396.
|
[15] |
ZANG N. Thermal stability analysis of dicumylperoxide[J]. Lecture Notes in Electrical Engineering, 2012, 137:279-286.
|
[16] |
ASKONAS C F, BURELBACH J P, LEUNG J C. The versatile VSP2:a tool for adiabatic thermal analysis and vent sizing applications[C]//28th Annual North American Thermal Analysis Society (NATAS) Conference, Orlando, Florida, October. 2000:4-6.
|
[17] |
WU S H, WANG Y W, WU T C, et al. Evaluation of thermal hazards for dicumyl peroxide by DSC and VSP2[J]. Journal of Thermal Analysis & Calorimetry, 2008, 93(1):189-194.
|
[18] |
HOU H Y, LIAO T S, DUH Y S, et al. Thermal hazard studies for dicumyl peroxide by DSC and TAM[J]. Journal of Thermal Analysis & Calorimetry, 2006, 83(1):167-171.
|
[19] |
WU K W, HOU H Y, SHU C M. Thermal phenomena studies for dicumyl peroxide at various concentrations by DSC[J]. Journal of Thermal Analysis & Calorimetry, 2006, 83(1):41-44.
|
[20] |
LU K T, CHU Y C, CHEN T C, et al. Investigation of the decomposition reaction and dust explosion characteristics of crystalline dicumylperoxide[J]. Journal of Hazardous Materials, 2008, 161(1):246-56.
|
[21] |
VALDES O J R, MORENO V C, WALDRAM S P, et al. Experimental sensitivity analysIs of the runaway severity of dicumyl peroxide decomposition USING adiabatic calorimetry[J]. ThermochimicaActa, 2015, 617(4):510-513.
|
[22] |
FRIEDMAN H L. Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic[J]. Journal of Polymer Science Part C Polymer Symposia, 2007, 6(1):183-195.
|
[23] |
VYAZOVKIN S. Kinetic concepts of thermally stimulated reactions in solids[J]. International Reviews in Physical Chemistry, 2010, 19(1):45-60.
|
[24] |
VYAZOVKIN S. On the phenomenon of variable activation energy for condensed phase reactions[J]. New Journal of Chemistry, 2000, 24(11):913-917.
|
[25] |
VYAZOVKIN S. Chapter 13-Isoconversional Kinetics[J]. Handbook of Thermal Analysis & Calorimetry, 2008, 5(08):503-538.
|
[26] |
VYAZOVKIN S, SBIRRAZZUOLI N. Isoconversional Kinetic Analysis of Thermally Stimulated Processes in Polymers[J]. Macromolecular Rapid Communications, 2006, 27(18):1515-1532.
|
[27] |
KOSSOY A, KOLUDAROVA E. Specific features of kinetics evaluation in calorimetric studies of runaway reactions[J]. Journal of Loss Prevention in the Process Industries, 1995, 8(4):229-235.
|
[28] |
RODUIT B, HARTMANN M, FOLLY P, et al. Prediction of thermal stability of materials by modified kinetic and model selection approaches based on limited amount of experimental points[J]. ThermochimicaActa, 2014, 579(5):31-39.
|
[29] |
RODUIT B, HARTMANN M, FOLLY P, et al. Thermal decomposition of AIBN, Part B:Simulation of SADT value based on DSC results and large scale tests according to conventional and new kinetic merging approach[J]. ThermochimicaActa, 2015, 355:6-24.
|
[30] |
MOUKHINA E. Thermal decomposition of AIBN, Part C:SADT calculation of AIBN based on DSC experiments[J]. ThermochimicaActa, 2015, 621:25-35.
|