化工学报 ›› 2017, Vol. 68 ›› Issue (7): 2621-2630.DOI: 10.11949/j.issn.0438-1157.20170085
刘淑芝, 韩伟, 刘先军, 崔宝臣
收稿日期:
2017-01-18
修回日期:
2017-03-24
出版日期:
2017-07-05
发布日期:
2017-07-05
通讯作者:
崔宝臣
基金资助:
黑龙江省自然科学基金项目(B2015011);东北石油大学科研启动基金项目。
LIU Shuzhi, HAN Wei, LIU Xianjun, CUI Baochen
Received:
2017-01-18
Revised:
2017-03-24
Online:
2017-07-05
Published:
2017-07-05
Contact:
10.11949/j.issn.0438-1157.20170085
Supported by:
supported by the Natural Science Foundation of Heilongjiang Province (B2015011) and the Foundation of Northeast Petroleum University.
摘要:
氨是世界上产量最大的化工产品之一,在全球经济中占有重要地位。传统的Haber-Bosch合成氨工艺需要在高温高压下进行,并且氢的平衡转化率低、能耗高、污染严重。电化学方法因可实现氨的常温常压合成而成为备受关注的研究领域。电化学合成氨的关键在于选择合适的电解质、制备电极及电催化剂,并将其有机组合在一起构建成高效稳定的电解池体系。综述了液体电解质、质子导体陶瓷膜电解质、熔盐电解质、陶瓷膜-熔盐复合电解质和有机质子交换膜电解质5类电解质体系的电化学合成氨的研究进展,介绍了相应的电化学合成氨原理,分析了技术发展现状和存在的问题,展望了未来研究的发展方向。
中图分类号:
刘淑芝, 韩伟, 刘先军, 崔宝臣. 电化学合成氨研究进展[J]. 化工学报, 2017, 68(7): 2621-2630.
LIU Shuzhi, HAN Wei, LIU Xianjun, CUI Baochen. Advances in electrochemical synthesis of ammonia[J]. CIESC Journal, 2017, 68(7): 2621-2630.
[1] | NAKAJIMA J, SEKIGUCHI H. Synthesis of ammonia using microwave discharge at atmospheric pressure[J]. Thin Solid Films, 2008, 516(13): 4446-4451. |
[2] | BAI M D, BAI X X, ZHANG Z T. Synthesis of NH3 by non equilibrium plasma under normal pressure[J]. Chin. J. Appl. Chem., 1998, 15(5): 71-73. |
[3] | PICKETT C J, TALARMIN J. Electrosynthesis of ammonia[J]. Nature, 1985, 317(6038): 652-653. |
[4] | GIDDEY S, BADWAL S P S, KULKARNI A. Review of electrochemical ammonia production[J]. Int. J. Hydrogen Energ., 2013, 38: 14576-14594. |
[5] | SHIPMAN M A, SYMES M D. Recent progress towards the electrosynthesis of ammonia from sustainable resources[J]. Catal. Today, 2017, 286: 57-68. |
[6] | AMAR I A, LAN R, PETIT C T G, et al. Solid-state electrochemical synthesis of ammonia: a review[J] J. Solid State Electrochem., 2011, 15: 1845-1860. |
[7] | FURUYA N, HIROSHI Y. Nitrogen fixation using a gas diffusion eletrode loaded Fe-phthalocyanine[J]. Denki Kagaku, 1989, 57(3): 261-262. |
[8] | FURUYA N, HIROSHI Y. Electroreduction of nitrogen to ammonia on gas-diffusion electrodes modified by Fe-phthalocyanine[J]. Electroanal. Chem., 1989, 263: 171-174. |
[9] | FURUYA N, HIROSHI Y. Electroreduction of nitrogen to ammonia on gas-diffusion electrodes modified by metal phthalocyanine[J]. Electroanal. Chem., 1989, 272: 263-266. |
[10] | KORDALI V, KYRIACOU G, LAMBROU C. Electrochemical synthesis of ammonia at atmospheric pressure and low temperature in a solid polymer electrolyte cell[J]. Chem. Comm., 2000, 31(48): 1673-1674. |
[11] | CHEN S M, PERATHONER S, AMPELLI C, et al. Electrocatalytic synthesis of ammonia at room temperature and atmospheric pressure from water and nitrogen on a carbon-nanotube-based electrocatalyst[J]. Angew. Chem., 2017, 129(10): 2743-2747. |
[12] | K?LELI F, KAYAN D B. Low overpotential reduction of dinitrogen to ammonia in aqueous media[J]. Electroanal. Chem., 2010, 638:119-122. |
[13] | TSUNETO A, KUDO A, SAKATA T. Lithium-mediated electrochemical reduction of high pressure N2 to NH3[J]. Electroanal. Chem., 1994, 367: 183-188. |
[14] | KIM K, LEE N, YOO C Y, et al. Communication-electrochemical reduction of nitrogen to ammonia in 2-propanol under ambient temperature and pressure[J]. J. Electrochem. Soc., 2016, 163(7): F610-F612. |
[15] | KIM K, YOO C Y, KIM J N, et al. Electrochemical synthesis of ammonia from water and nitrogen in ethylenediamine under ambient temperature and pressure[J]. J. Electrochem. Soc., 2016, 163(14): F1523-F1526. |
[16] | PAPPENFUS T M, LEE K, THOMA L M, et al. Wind to ammonia: electrochemical processes in room temperature ionic liquids[J]. ECS Trans., 2009, 16: 89-93. |
[17] | STOTZ S, WAGNER C. Die löslichkeit von wasserdampf und wasserstoff in festen oxiden[J]. Ber. Bunsenges Phys. Chem., 1966, 70(8): 781-788. |
[18] | IWAHARA H, ESAKA T, UCHIDA H, et al. Proton conduction in sintered oxides and its application to steam electrolysis for hydrogen production[J]. Solid State Ionics, 1981, 3/4: 359-363. |
[19] | MARNELLOS G, STOUKIDES M. Ammonia synthesis at atmospheric pressure[J]. Science, 1998, 282(5386): 98-100. |
[20] | NIGARA Y, YASHIRO K, KAWADA T, et al. The atomic hydrogen permeability in (CeO2)0.85(CaO)0.15 at high temperatures[J]. Solid State Ionics, 2001, 145(1/2/3/4): 365-370. |
[21] | LIU R Q, XIE Y H, WANG J D, et al. Synthesis of ammonia at atmospheric pressure with Ce0.8M0.2O2-δ(M=La, Y, Gd, Sm) and their proton conduction at intermediate temperature[J]. Solid State Ionics, 2006, 177(1/2): 73-76. |
[22] | 刘瑞泉, 谢亚红, 李志杰, 等. 质子导体 (Ce0.8La0.2)1-xCaxO2-δ在合成氨中的应用[J]. 物理化学学报, 2005, 21(9): 967-970.LIU R Q, XIE Y H, LI Z J, et al. Application of proton conductors (Ce0.8La0.2)1-xCaxO2-δ in synthesis of ammonia[J]. Acta Phys.-Chim. Sin., 2005, 21(9): 967-970. |
[23] | OMATA T, OKUDA Y M. Electrical properties of proton-conducting Ca2+-doped La2Zr2O7 with a pyrochlore-type structure[J]. J. Electrochem. Soc., 2001, 148(6): 252-261. |
[24] | XIE Y H, WANG J D, LIU R Q, et al. Preparation of La1.9Ca0.1Zr2O6.95 with pyrochlore structure and its application in synthesis of ammonia at atmospheric pressure[J]. Solid State Ionics, 2004, 168(1): 117-121. |
[25] | 谢亚红, 刘瑞泉, 王吉德, 等. Ca、Ce 双掺杂烧绿石型复合氧化物的合成及离子导电性能研究[J]. 无机化学学报, 2004, 20(5): 551-554.XIE Y H, LIU R Q, WANG J D, et al. Synthesis and electrical properties of Ca and Ce doped pyrochlore-type oxides[J]. Chin. J. Inorg. Chem., 2004, 20(5): 551-554. |
[26] | ZUO C D, ZHA S W, LIU M L, et al. Ba(Zr0.1Ce0.7Y0.2)O3-δ as an electrolyte for low-temperature solid-oxide fuel cells[J]. Adv. Mater., 2006, 18(24): 3318-3320. |
[27] | 宿新泰, 刘瑞泉, 王吉德. SrCe0.95Y0.05O3-δ在中温区的电化学性质及其在常压合成氨中的应用[J]. 化学学报, 2003, 61(4): 505-509.SU X T, LIU R Q, WANG J D. Electrochemical properties of SrCe0.95Y0.05O3-δ at intermediate temperature and its application to ammonia synthesis at atmospheric pressure[J]. Acta Chim. Sinica, 2003, 61(4): 505-509. |
[28] | MA G L, ZHANG F, ZHU J L, et al. Proton conduction in La0.9Sr0.1Ga0.8Mg0.2O3-a[J]. Chem. Mater., 2006, 18(25): 6006-6011. |
[29] | 陈成, 王文宝, 马桂林. La0.9M0.1Ga0.8Mg0.2O3-a 的中温质子导电性及其在常压合成氨中的应用[J]. 化学学报, 2009, 67(7): 623-628.CHEN C, WANG W B, MA G L. Proton conduction in La0.9M0.1Ga0.8Mg0.2O3-a at intermediate temperature and its application to synthesis of ammonia at atmospheric pressure[J]. Acta Chim. Sinica, 2009, 67(7): 623-628. |
[30] | CHEN C, MA G. Proton conduction in BaCe1-xGdxO3-a at intermediate temperature and its application to synthesis of ammonia at atmospheric pressure[J]. J. Alloys Compd., 2009, 485(1/2): 69-72. |
[31] | LI Z J, LIU R Q, WANG J D, et al. Preparation of BaCe0.8Gd0.2O3-δ by the citrate method and its application in the synthesis of ammonia at atmospheric pressure[J]. J. Solid State Electrochem., 2005, 9(4): 201-204. |
[32] | WANG W, CAO X B, GAO W J, et al. Ammonia synthesis at atmospheric pressure using a reactor with thin solid electrolyte BaCe0.85Y0.15O3-a membrane[J]. J. Memb. Sci., 2010, 360(1/2): 397-403. |
[33] | LIU J W, LI Y D, WANG W B, et al. Proton conduction at intermediate temperature and its application in ammonia synthesis at atmospheric pressure of BaCe1-xCaxO3-a[J]. J. Mater. Sci., 2010, 45(21): 5860-5864. |
[34] | 张蔚, 宿新泰, 刘瑞泉. 多层膜结构BaCe0.9Nd0.1O3-δ的制备及其在常压合成氨中的应用[J]. 中国稀土学报, 2006, 24(1): 102-106. ZHANG W, SU X T, LIU R Q. Synthesis of BaCe0.9Nd0.1O3-δ multilayer membrane and its application to ammonia synthesis at atmospheric pressure[J]. J. Chin. Soc. Rare Earths, 2006, 24(1): 102-106. |
[35] | LI Z J, LIU R Q, WANG J D, et al. Preparation of double-doped BaCeO3 and its application in the synthesis of ammonia at atmospheric pressure[J]. Sci. Tech. Adv. Mater., 2007, 8(7/8): 566-570. |
[36] | YUN D S, JOO J H, YU J H, et al. Electrochemical ammonia synthesis from steam and nitrogen using proton conducting yttrium doped barium zirconate electrolyte with silver, platinum, and lanthanum strontium cobalt ferrite electrocatalyst[J]. J. Power Sources, 2015, 284: 245-251. |
[37] | 李志杰, 王吉德, 刘瑞泉, 等. 铈、钇双掺杂钙钛矿型复合氧化物的合成及其在常压合成氨中的应用[J]. 中国稀土学报, 2005, 23(1): 62-67.LI Z J, WANG J D, LIU R Q, et al. Synthesis of Ce and Y doped perovskite-type oxides and its application in synthesis of ammonia at atmospheric pressure[J]. J. Chin. Soc. Rare Earths, 2005, 23(1): 62-67. |
[38] | YIN J L, WANG X W, XU J H, et al. Ionic conduction in BaCe0.85-xZrxEr0.15O3-a and its application to ammonia synthesis at atmospheric pressure[J]. Solid State Ionics, 2011, 185(1): 6-10. |
[39] | 朱剑莉, 马桂林. BaCe0.8Zr0.10Nd0.10O3-α的质子导电性及在常压合成氨中的应用[J]. 南昌大学学报(理科版), 2012, 36(5): 462-471.ZHU J L, MA G L. Proton conduction in BaCe0.8Zr0.10Nd0.10O3-α and its application to ammonia synthesis at atmospheric pressure[J]. J. Nanchang University (Nat. Sci.), 2012, 36(5): 462-471. |
[40] | 朱剑莉, 马桂林, 占忠亮. 阳极支撑BZCY 电解质及GBFN 阴极膜在常压合成氨中的性能研究[J]. 中国稀土学报, 2012, 30(6): 744-749.ZHU J L, MA G L, ZHAN Z L. Performances of anode-supported BZCY electrolyte and GBFN cathode membranes in ammonia synthesis at atmospheric pressure[J]. J. Chin. Soc. Rare Earths, 2012, 30(6): 744-749. |
[41] | VASILEIOU E, KYRIAKOU V, GARAGOUNIS I, et al. Ammonia synthesis at atmospheric pressure in a BaCe0.2Zr0.7Y0.1O2.9 solid electrolyte cell[J]. Solid State Ionics, 2015, 275: 110-116. |
[42] | VASILEIOU E, KYRIAKOU V, GARAGOUNIS I, et al. Electrochemical enhancement of ammonia synthesis in a BaZr0.7Ce0.2Y0.1O2.9 solid electrolyte cell[J]. Solid State Ionics, 2016, 288: 357-362. |
[43] | LI Z J, LIU R Q, XIE Y H, et al. A novel method for preparation of doped Ba3(Ca1.18Nb1.82)O9-δ: application to ammonia synthesis at atmospheric pressure[J]. Solid State Ionics, 2005, 176(11/12): 1063-1066. |
[44] | TSUYOSHI M, TOKUJIRO N, TOSHIYUKI N, et al. Electrolytic synthesis of ammonia in molten salts under atmospheric pressure[J]. J. Am. Chem. Soc., 2003, 125(2): 334-335. |
[45] | KIM K, KIM J N, YOON H C, et al. Effect of electrode material on the electrochemical reduction of nitrogen in a molten LiCl-KCl-CsCl system[J]. Int. J. Hydrogen Energy, 2015, 40(16): 5578-5582. |
[46] | KIM K, YOON H C, KIM J N, et al. Electrochemical synthesis of ammonia from water and nitrogen catalyzed by nano-Fe2O3 and CoFe2O4 suspended in a molten LiCl-KCl-CsCl electrolyte[J]. Korean J. Chem. Eng., 2016, 33(6): 1777-1780. |
[47] | LICHT S, CUI B C, WANG B H, et al. Ammonia synthesis by N2 and steam electrolysis in molten hydroxide suspensions of nanoscale Fe2O3[J]. Science, 2014, 345(6197): 637-640. |
[48] | LI F F, LICHT S. Advances in understanding the mechanism and improved stability of the synthesis of ammonia from air and water in hydroxide suspensions of nanoscale Fe2O3[J]. Inorg. Chem., 2014, 53: 10042-10044. |
[49] | CUI B H, ZHANG J H, LIU S Z, et al. Electrochemical synthesis of ammonia directly from N2 and water over iron-based catalysts supported on activated carbons[J]. Green Chem., 2017, 19: 298-304. |
[50] | 王本辉, 刘瑞泉, 王吉德, 等. Ce0.8Y0.2O1.9-Ca3(PO4)2-K3PO4 复合电解质在中温区的质子导电性及在常压合成氨中的应用[J]. 无机化学学报, 2005, 21(10): 1551-1554.WANG B H, LIU R Q, WANG J D, et al. Doped Ceria-Ca3(PO4)2-K3PO4 composite electrolyte: proton conductivity at intermediate temperature and application in atmospheric pressure ammonia synthesis[J]. Chin. J. Inorg. Chem., 2005, 21(10): 1551-1554. |
[51] | WANG B H, WANG J D, LIU R Q, et al. Synthesis of ammonia from natural gas at atmospheric pressure with doped ceria-Ca3(PO4)2-K3PO4 composite electrolyte and its proton conductivity at intermediate temperature[J]. J. Solid State Electrochem., 2006, 11 (1): 27-31. |
[52] | 刘玉星, 刘瑞泉, 王吉德. La0.9Sr0.1Al0.9Mg0.1O3-δ-Ca3(PO4)2-K3PO4 复合电解质的合成及在常压天然气合成氨中的应用[J]. 无机化学学报, 2007, 23(2): 339-342.LIU Y X, LIU R Q, WANG J D. La0.9Sr0.1Al0.9Mg0.1O3-δ- Ca3(PO4)2-K3PO4 composite electrolyte: preparation and application to ammonia synthesis at atmospheric pressure[J]. Chin. J. Inorg. Chem., 2007, 23 (2): 339-342. |
[53] | AMAR I A, LAN R, PETIT C T G, et al. Electrochemical synthesis of ammonia based on a carbonate-oxide composite electrolyte[J]. Solid State Ionics, 2011, 182(1): 133-138. |
[54] | AMAR I A, LAN R, PETIT C T G, et al. Electrochemical synthesis of ammonia based on Co3Mo3N catalyst and LiAlO2-(Li,Na,K)2CO3 composite electrolyte[J]. Electrocatalysis, 2015, 6(3): 286-294. |
[55] | AMAR I A, LAN R, PETIT C T G, et al. Electrochemical synthesis of ammonia using Fe3Mo3N catalyst and carbonate-oxide composite electrolyte[J]. Int. J. Electrochem. Sci., 2015, 10: 3757-3766. |
[56] | AMAR I A, PETIT C T G, ZHANG L, et al. Electrochemical synthesis of ammonia based on doped-ceria-carbonate composite electrolyte and perovskite cathode[J]. Solid State Ionics, 2011, 201(1): 94-100. |
[57] | AMAR I A, PETIT C T G, MANN G, et al. Electrochemical synthesis of ammonia from N2 and H2O based on (Li, Na, K)2CO3-Ce0.8Gd0.18Ca0.02O2-δ composite electrolyte and CoFe2O4 cathode[J]. Int. J. Hydrogen Energy, 2014, 39(9): 4322-4330. |
[58] | AMAR I A, PETIT C T G, LAN R, et al. Electrochemical synthesis of ammonia from wet nitrogen using La0.6Sr0.4FeO3-δ- Ce0.8Gd0.18Ca0.02O2-δ composite cathode[J]. RSC Adv., 2014, 4(36): 18749-18754. |
[59] | AMAR I A, LAN R, TAO S W. Electrochemical synthesis of ammonia directly from wet N2 using La0.6Sr0.4Fe0.8Cu0.2O3-δ- Ce0.8Gd0.18Ca0.02O2-δ composite catalyst[J]. J. Electrochem. Soc., 2014, 161(6): H350-354. |
[60] | AMAR I A, LAN R, TAO S W. Synthesis of ammonia directly from wet nitrogen using a redox stable La0.75Sr0.25Cr0.5Fe0.5O3-δ- Ce0.8Gd0.18Ca0.02O2-δ composite cathode[J]. RSC Adv., 2015, 5: 38977-38983. |
[61] | LAN R, ALKHAZMI K A, AMAR I A, et al. Synthesis of ammonia directly from wet air at intermediate temperature[J]. Appl. Catal. B: Environmental, 2014, 152/153: 212-217. |
[62] | LAN R, ALKHAZMI K A, AMAR I A, et al. Synthesis of ammonia directly from wet air using new perovskite oxide La0.8Cs0.2Fe0.8Ni0.2O3-δ as catalyst[J]. Electrochim. Acta, 2014, 123: 582-587. |
[63] | LAN R, ALKHAZMI K A, AMAR I A, et al. Synthesis of ammonia directly from wet air using Sm0.6Ba0.4Fe0.8Cu0.2O3-δ as the catalyst[J]. Faraday Discuss., 2015, 182: 353-363. |
[64] | SAITO M, HAYAMIZU K, OKADA T. Temperature dependence of ion and water transport in perfluorinated ionomer membranes for fuel cells[J]. J. Phys. Chem. B, 2005, 109(8): 3112-3119. |
[65] | HSU W Y, GIERKE T D. Ion transport and clustering in nafion perfluorinated membranes[J]. J. Memb. Sci., 1983, 13(3): 307-326. |
[66] | XU G C, LIU R Q, WANG J. Electrochemical synthesis of ammonia using a cell with a nafion membrane and SmFe0.7Cu0.3-xNixO3(x = 0—0.3) cathode at atmospheric pressure and lower temperature[J]. Sci. China Ser. B: Chem., 2009, 52(8): 1171-1175. |
[67] | XU G C, LIU R Q. Sm1.5Sr0.5MO4 (M=Ni, Co, Fe) cathode catalysts for ammonia synthesis at atmospheric pressure and low temperature[J]. Chin. J. Chem., 2009, 27(4): 677-680. |
[68] | LIU R Q, XU G C. Comparison of electrochemical synthesis of ammonia by using sulfonated polysulfone and nafion membrane with Sm1.5Sr0.5NiO4[J]. Chin. J. Chem., 2010, 28(1): 139-142. |
[69] | 王进, 刘瑞泉. SDC 和SSC 在低温常压电化学合成氨中的性能研究[J]. 化学学报, 2008, 66(7): 717-721.WANG J, LIU R Q. Property research of SDC and SSC in ammonia synthesis at atmospheric pressure and low temperature[J]. Acta Chim. Sinica, 2008, 66(7): 717-721. |
[70] | 徐艳丽, 刘瑞泉. Sm1.2Sr0. 8Co1-xNix O4 + δ(x = 0.0, 0.1, 0.2) 粉体在低温常压下电化学合成氨中的阴极催化性能[J]. 化学通报, 2010, (9): 809-813.XU Y L, LIU R Q. Cathode catalytic performance of Sm1.2Sr0.8Co1-xNixO4+δ (x = 0.0, 0.1, 0.2) in electrosynthesis ammonia at atmospheric pressure and lower temperature[J]. Chemistry, 2010, (9): 809-813. |
[71] | ZHANG Z F, ZHONG Z P, LIU R Q. Cathode catalysis performance of SmBaCuMO5+δ (M=Fe, Co, Ni) in ammonia synthesis[J]. J. Rare Earths, 2010, 28(4): 556-559. |
[72] | 崔银仓, 刘瑞泉. LSCCF粉体在低温常压电化学合成氨中的阴极催化性能[J]. 新疆大学学报(自然科学版), 2010, 27(4): 473-477.CUI Y C, LIU R Q. Cathode catalytic performance of LSCCF powders in electro synthesis ammonia at atmospheric pressure and lower temperature[J]. J. Xinjiang University (Nat. Sci. Edition), 2010, 27(4): 473-477. |
[73] | LAN R, IRVINE J T S, TAO S W. Synthesis of ammonia directly from air and water at ambient temperature and pressure[J]. Scientific Reports, 2013, 3:1145. |
[1] | 杨学金, 杨金涛, 宁平, 王访, 宋晓双, 贾丽娟, 冯嘉予. 剧毒气体PH3的干法净化技术研究进展[J]. 化工学报, 2023, 74(9): 3742-3755. |
[2] | 范孝雄, 郝丽芳, 范垂钢, 李松庚. LaMnO3/生物炭催化剂低温NH3-SCR催化脱硝性能研究[J]. 化工学报, 2023, 74(9): 3821-3830. |
[3] | 程业品, 胡达清, 徐奕莎, 刘华彦, 卢晗锋, 崔国凯. 离子液体基低共熔溶剂在转化CO2中的应用[J]. 化工学报, 2023, 74(9): 3640-3653. |
[4] | 陈杰, 林永胜, 肖恺, 杨臣, 邱挺. 胆碱基碱性离子液体催化合成仲丁醇性能研究[J]. 化工学报, 2023, 74(9): 3716-3730. |
[5] | 吴雷, 刘姣, 李长聪, 周军, 叶干, 刘田田, 朱瑞玉, 张秋利, 宋永辉. 低阶粉煤催化微波热解制备含碳纳米管的高附加值改性兰炭末[J]. 化工学报, 2023, 74(9): 3956-3967. |
[6] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[7] | 杨欣, 彭啸, 薛凯茹, 苏梦威, 吴燕. 分子印迹-TiO2光电催化降解增溶PHE废水性能研究[J]. 化工学报, 2023, 74(8): 3564-3571. |
[8] | 杨菲菲, 赵世熙, 周维, 倪中海. Sn掺杂的In2O3催化CO2选择性加氢制甲醇[J]. 化工学报, 2023, 74(8): 3366-3374. |
[9] | 李凯旋, 谭伟, 张曼玉, 徐志豪, 王旭裕, 纪红兵. 富含零价钴活性位点的钴氮碳/活性炭设计及甲醛催化氧化应用研究[J]. 化工学报, 2023, 74(8): 3342-3352. |
[10] | 胡亚丽, 胡军勇, 马素霞, 孙禹坤, 谭学诣, 黄佳欣, 杨奉源. 逆电渗析热机新型工质开发及电化学特性研究[J]. 化工学报, 2023, 74(8): 3513-3521. |
[11] | 涂玉明, 邵高燕, 陈健杰, 刘凤, 田世超, 周智勇, 任钟旗. 钙基催化剂的设计合成及应用研究进展[J]. 化工学报, 2023, 74(7): 2717-2734. |
[12] | 张琦钰, 高利军, 苏宇航, 马晓博, 王翊丞, 张亚婷, 胡超. 碳基催化材料在电化学还原二氧化碳中的研究进展[J]. 化工学报, 2023, 74(7): 2753-2772. |
[13] | 葛加丽, 管图祥, 邱新民, 吴健, 沈丽明, 暴宁钟. 垂直多孔碳包覆的FeF3正极的构筑及储锂性能研究[J]. 化工学报, 2023, 74(7): 3058-3067. |
[14] | 屈园浩, 邓文义, 谢晓丹, 苏亚欣. 活性炭/石墨辅助污泥电渗脱水研究[J]. 化工学报, 2023, 74(7): 3038-3050. |
[15] | 李盼, 马俊洋, 陈志豪, 王丽, 郭耘. Ru/α-MnO2催化剂形貌对NH3-SCO反应性能的影响[J]. 化工学报, 2023, 74(7): 2908-2918. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||