化工学报 ›› 2018, Vol. 69 ›› Issue (5): 1956-1963.DOI: 10.11949/j.issn.0438-1157.20171075
孔令健1, 韩吉田2, 陈常念2, 刘志刚1
收稿日期:
2017-08-09
修回日期:
2017-10-31
出版日期:
2018-05-05
发布日期:
2018-05-05
通讯作者:
韩吉田
基金资助:
国家自然科学基金项目(51076084,51541604);山东省自然科学基金项目(ZR2016YL005)。
KONG Lingjian1, HAN Jitian2, CHEN Changnian2, LIU Zhigang1
Received:
2017-08-09
Revised:
2017-10-31
Online:
2018-05-05
Published:
2018-05-05
Supported by:
supported by the National Natural Science Foundation of China (51076084, 51541604) and the Natural Science Foundation of Shandong Province (ZR2016YL005).
摘要:
在系统压力P=412~850 kPa,过冷度△Tsub=4.7~15.0℃,热通量q"=0.11~10.90 kW·m-2,质量流量G=147.5~443.7 kg·m-2·s-1的条件下,对立式和卧式螺旋管内R134a过冷流动沸腾起始点特性进行了实验研究。研究结果表明:当实验系统参数相同时,立式和卧式螺旋管内过冷沸腾起始点的热通量基本相同,但是立式螺旋管内过冷沸腾起始点壁面过热度小于卧式螺旋管;过冷沸腾起始点的热通量、壁面过热度随着过冷度和质量流量的增大而增大,但随着压力、螺旋直径的增大而减小。通过无量纲分析对实验数据进行非线性拟合,发展了适用于螺旋管过冷沸腾起始点的关联式。
中图分类号:
孔令健, 韩吉田, 陈常念, 刘志刚. 立式和卧式螺旋管内过冷沸腾起始点特性[J]. 化工学报, 2018, 69(5): 1956-1963.
KONG Lingjian, HAN Jitian, CHEN Changnian, LIU Zhigang. Onset of nucleate boiling characteristics of subcooled flow in vertical and horizontal helically-coiled tubes[J]. CIESC Journal, 2018, 69(5): 1956-1963.
[1] | NI L, CIONCOLINI A, BUTELl M T, et al. Flow boiling heat transfer in a helically coiled steam generator for nuclear power applications[J]. International Journal of Heat and Mass Transfer, 2016, 92:91-99. |
[2] | CHAKRABANDHU K, SINGH R K. Determination of food particle residence time distributions in coiled tube and straight tube with bends at high temperature using correlation analysis[J]. Journal of Food Engineering, 2006, 76(2):238-249. |
[3] | GUPTA P K, KUSH P K, TIWARI A. Design and optimization of coil finned-tube heat exchangers for cryogenic applications[J]. Cryogenics, 2007, 47(5):322-332. |
[4] | YI X W, LEE W L. The use of helical heat exchanger for heat recovery domestic water-cooled air-conditioners[J]. Energy Conversion and Management, 2009, 50(2):240-246. |
[5] | BERGER S A, TALBOT L, YAO L S. Flow in curved pipes[J]. Annual Review of Fluid Mechanics, 1983, 15(1):461-512. |
[6] | HUMINIC G, HUMINIC A. Heat transfer and flow characteristics of conventional fluids and nanofluids in curved tubes:a review[J]. Renewable and Sustainable Energy Reviews, 2016, 58:1327-1347. |
[7] | NAPHON P, WONGWISES S. A review of flow and heat transfer characteristics in curved tubes[J]. Renewable and Sustainable Energy Reviews, 2006, 10(5):463-490. |
[8] | FSADNI A M, WHITTY J P M. A review on the two-phase heat transfer characteristics in helically coiled tube heat exchangers[J]. International Journal of Heat and Mass Transfer, 2016, 95:551-565. |
[9] | CHEN C N, HAN J T, JEN T C, et al. Dry-out CHF correlation for R134a flow boiling in a horizontal helically-coiled tube[J]. International Journal of Heat and Mass Transfer, 2011, 54(1):739-745. |
[10] | Hsu Y Y. On the size range of active nucleation cavities on a heating surface[J]. Journal of Heat Transfer, 1962, 84(3):207-213. |
[11] | Sato T, Matsumura H. On the conditions of incipient subcooled-boiling with forced convection[J]. Bulletin of JSME, 1964, 7(26):392-398. |
[12] | Davis E J, Anderson G H. The incipience of nucleate boiling in forced convection flow[J]. AIChE Journal, 1966, 12(4):774-780. |
[13] | McAdams W H, Kennel W E, Minden C S, et al. Heat transfer at high rates to water with surface boiling[J]. Industrial & Engineering Chemistry, 1949, 41(9):1945-1953. |
[14] | Bergles A E, Rohsenow W M. The determination of forced-convection surface-boiling heat transfer[J]. Journal of Heat Transfer, 1964, 86(3):365-372. |
[15] | Kandlikar S G. Development of a flow boiling map for subcooled and saturated flow boiling of different fluids inside circular tubes[J]. Journal of Heat Transfer, 1991, 113(1):190-200. |
[16] | Kandlikar S G. Heat transfer characteristics in partial boiling, fully developed boiling, and significant void flow regions of subcooled flow boiling[J]. Journal of Heat Transfer, 1998, 120(2):395-401. |
[17] | 杨瑞昌, 王彦武, 唐虹, 等. 过冷沸腾起始点和净蒸汽产生点的实验研究[J]. 工程热物理学报, 2001, 22(2):229-232. Yang R C, Wang Y W, Tang H, et al. Experimental study on onset of subcooled boiling and point of net vapor generation[J]. Journal of Engineering Thermophysics, 2001, 22(2):229-232. |
[18] | Basu N, Warrier G R, Dhir V K. Onset of nucleate boiling and active nucleation site density during subcooled flow boiling[J]. Journal of Heat Transfer, 2002, 124(4):717-728. |
[19] | 徐广展, 孙中宁, 孟现珂, 等. 含内热源多孔介质通道内ONB特性[J]. 化工学报, 2012, 63(10):3080-3085. Xu G Z, Sun Z N, Meng X K, et al. ONB characteristics in porous media with internal heat source[J]. CIESC Journal, 2012, 63(10):3080-3085. |
[20] | 周云龙, 侯延栋, 李洪伟. 棒束通道内过冷沸腾起始点的实验研究[J]. 原子能科学技术, 2014, 48(8):1416-1420. Zhou Y L, Hou Y D, Li H W. Experiment study on onset of nucleate boiling in rod bundle channel[J]. Atomic Energy Science and Technology, 2014, 48(8):1416-1420. |
[21] | 赵楠, 张旺, 杨立新. 不同宽度窄缝通道过冷沸腾[J]. 化工学报, 2016, 67(S1):47-56. Zhao N, Zhang W, Yang L X. Subcooled boiling in narrow channels with different sizes[J]. CIESC Journal, 2016, 67(S1):47-56. |
[22] | Castiglione T, Pizzonia F, Piccione R, et al. Detecting the onset of nucleate boiling in internal combustion engines[J]. Applied Energy, 2016, 164:332-340. |
[23] | Song J H, Lee J, Chang S H, et al. Onset of nucleate boiling in narrow, rectangular channel for downward flow under low pressure[J]. Annals of Nuclear Energy, 2016, 109:498-506. |
[24] | Al-Yahia O S, Jo D. Onset of nucleate boiling for subcooled flow through a one-side heated narrow rectangular channel[J]. Annals of Nuclear Energy, 2017, 109:30-40. |
[25] | Al-Yahia O S, Jo D. ONB, OSV, and OFI for subcooled flow boiling through a narrow rectangular channel heated on one-side[J]. International Journal of Heat and Mass Transfer, 2018, 116:136-151. |
[26] | Jens W H, Lottes P A. Analysis of heat transfer, burnout, pressure drop and density data for high pressure water[R]. Argonne National Laboratory Report, ANL-4627, Argonne National Laboratory. |
[27] | Shen B, Yamada M, Hidaka S, et al. Early onset of nucleate boiling on gas-covered biphilic surfaces[J]. Scientific Reports, 2017, 7(1):2036. |
[28] | Kong L J, Han J T, Chen C N, et al. Subcooled flow boiling heat transfer characteristics of R134a in horizontal helically coiled tubes[J]. Journal of Enhanced Heat Transfer, 2015, 22(4):281-301. |
[29] | Moffat R J. Describing the uncertainties in experimental results[J]. Experimental Thermal and Fluid Science, 1988, 1(1):3-17. |
[30] | 张明, 周涛, 盛程, 等. 窄通道欠热沸腾起始点计算模型的分析[J]. 核动力工程, 2011, 32(3):73-76. Zhang M, Zhou T, Sheng C, et al. Study on calculation model of onset of nucleate boiling in narrow channels[J]. Nuclear Power Engineering, 2011, 32(3):73-76. straight tube with bends at high temperature using correlation analysis[J]. Journal of Food Engineering, 2006, 76(2):238-249. |
[3] | GUPTA P K, KUSH P K, TIWARI A. Design and optimization of coil finned-tube heat exchangers for cryogenic applications[J]. Cryogenics, 2007, 47(5):322-332. |
[4] | YI X W, LEE W L. The use of helical heat exchanger for heat recovery domestic water-cooled air-conditioners[J]. Energy Conversion and Management, 2009, 50(2):240-246. |
[5] | BERGER S A, TALBOT L, YAO L S. Flow in curved pipes[J]. Annual review of fluid mechanics, 1983, 15(1):461-512. |
[6] | HUMINIC G, HUMINIC A. Heat transfer and flow characteristics of conventional fluids and nanofluids in curved tubes:a review[J]. Renewable and Sustainable Energy Reviews, 2016, 58:1327-1347. |
[7] | NAPHON P, WONGWISES S. A review of flow and heat transfer characteristics in curved tubes[J]. Renewable and Sustainable Energy Reviews, 2006, 10(5):463-490. |
[8] | FSADNI A M, WHITTY J P M. A review on the two-phase heat transfer characteristics in helically coiled tube heat exchangers[J]. International Journal of Heat and Mass Transfer, 2016, 95:551-565. |
[9] | CHEN C N, HAN J T, JEN T C, et al. Dry-out CHF correlation for R134a flow boiling in a horizontal helically-coiled tube[J]. International Journal of Heat and Mass Transfer, 2011, 54(1):739-745. |
[10] | HSU Y Y. On the size range of active nucleation cavities on a heating surface[J]. Journal of Heat Transfer, 1962, 84(3):207-213. |
[11] | SATO T, MATSUMURA H. On the conditions of incipient subcooled-boiling with forced convection[J]. Bulletin of JSME, 1964, 7(26):392-398. |
[12] | DAVIS E J, ANDERSON G H. The incipience of nucleate boiling in forced convection flow[J]. AIChE Journal, 1966, 12(4):774-780. |
[13] | MCADAMS W H, KENNEL W E, MINDEN C S, et al. Heat transfer at high rates to water with surface boiling[J]. Industrial & Engineering Chemistry, 1949, 41(9):1945-1953. |
[14] | BERGLES A E, ROHSENOW W M. The determination of forced-convection surface-boiling heat transfer[J]. Journal of Heat Transfer, 1964, 86(3):365-372. |
[15] | KANDLIKAR S G. Development of a flow boiling map for subcooled and saturated flow boiling of different Fluids inside circular tubes[J]. Journal of Heat Transfer, 1991, 113(1):190-200. |
[16] | KANDLIKAR S G. Heat transfer characteristics in partial boiling, fully developed boiling, and significant void flow regions of subcooled flow boiling[J]. Journal of Heat Transfer, 1998, 120(2):395-401. |
[17] | 杨瑞昌, 王彦武, 唐虹,等. 过冷沸腾起始点和净蒸汽产生点的实验研究[J]. 工程热物理学报, 2001, 22(2):229-232. YANG R C, WANG YA W, TANG H, et al. Experimental study on onset of subcooled boiling and point of net vapor generation[J]. Journal of Engineering Thermophysics, 2001, 22(2):229-232. |
[18] | BASU N, WARRIER G R, DHIR V K. Onset of nucleate boiling and active nucleation site density during subcooled flow boiling[J]. Journal of Heat Transfer, 2002, 124(4):717-728. |
[19] | 徐广展, 孙中宁, 孟现珂,等. 含内热源多孔介质通道内ONB特性[J]. 化工学报, 2012, 63(10):3080-3085. XU G Z, SUN Z N, MENG X K, et al. ONB characteristics in porous media with internal heat source[J]. Journal of Chemical Industry and Engineering, 2012, 63(10):3080-3085. |
[20] | 周云龙, 侯延栋, 李洪伟. 棒束通道内过冷沸腾起始点的实验研究[J]. 原子能科学技术, 2014, 48(08):1416-1420. ZHOU Y L, HOU Y D, LI H W. Experiment study on onset of nucleate boiling in rod bundle channel[J]. Atomic Energy Science and Technology, 2014, 48(08):1416-1420. |
[21] | 赵楠, 张旺, 杨立新. 不同宽度窄缝通道过冷沸腾[J]. 化工学报, 2016, 67(S1):47-56. ZHAO N, ZHANG W, YANG L X. Subcooled boiling in narrow channels with different sizes[J]. Journal of Chemical Industry and Engineering, 2016, 67(S1):47-56. |
[22] | CASTIGLIONE T, PIZZONIA F, PICCIONE R, et al. Detecting the onset of nucleate boiling in internal combustion engines[J]. Applied Energy, 2016, 164:332-340. |
[23] | SONG J H, LEE J, CHANG S H, et al. Onset of nucleate boiling in narrow, rectangular channel for downward flow under low pressure[J]. Annals of Nuclear Energy, 2016, 109:498-506. |
[24] | AL-YAHIA O S, JO D. Onset of nucleate boiling for subcooled flow through a one-side heated narrow rectangular channel[J]. Annals of Nuclear Energy, 2017, 109:30-40. |
[25] | AL-YAHIA O S, JO D. ONB, OSV, and OFI for subcooled flow boiling through a narrow rectangular channel heated on one-side[J]. International Journal of Heat and Mass Transfer, 2018, 116(2018):136-151. |
[26] | JENS W H, LOTTES P A. Analysis of heat transfer, burnout, pressure drop and density data for high pressure water[R]. Argonne National Laboratory Report, ANL-4627, Argonne National Laboratory. |
[27] | SHEN B, YAMADA M, HIDAKA S, et al. Early Onset of Nucleate Boiling on Gas-covered Biphilic Surfaces[J]. Scientific Reports, 2017, 7. |
[28] | KONG L J, HAN J T, CHEN C N, et al. Subcooled flow boiling heat transfer characteristics of R134a in horizontal helically coiled tubes[J]. Journal of Enhanced Heat Transfer, 2015, 22(4):281-301. |
[29] | MOFFAT R J. Describing the uncertainties in experimental results[J]. Experimental Thermal and Fluid Science, 1988, 1(1):3-17. |
[30] | 张明, 周涛, 盛程, 等. 窄通道欠热沸腾起始点计算模型的分[J]. 核动力工程, 2011, 32(3):73-76. ZHANG M, ZHOU T, SHENG C, et al. Study on calculation model of onset of nucleate boiling in narrow channels[J]. Nuclear Power Engineering, 2011, 32(3):73-76. |
[1] | 张双星, 刘舫辰, 张义飞, 杜文静. R-134a脉动热管相变蓄放热实验研究[J]. 化工学报, 2023, 74(S1): 165-171. |
[2] | 张义飞, 刘舫辰, 张双星, 杜文静. 超临界二氧化碳用印刷电路板式换热器性能分析[J]. 化工学报, 2023, 74(S1): 183-190. |
[3] | 陈爱强, 代艳奇, 刘悦, 刘斌, 吴翰铭. 基板温度对HFE7100液滴蒸发过程的影响研究[J]. 化工学报, 2023, 74(S1): 191-197. |
[4] | 刘明栖, 吴延鹏. 导光管直径和长度对传热影响的模拟分析[J]. 化工学报, 2023, 74(S1): 206-212. |
[5] | 王志国, 薛孟, 董芋双, 张田震, 秦晓凯, 韩强. 基于裂隙粗糙性表征方法的地热岩体热流耦合数值模拟与分析[J]. 化工学报, 2023, 74(S1): 223-234. |
[6] | 江河, 袁俊飞, 王林, 邢谷雨. 均流腔结构对微细通道内相变流动特性影响的实验研究[J]. 化工学报, 2023, 74(S1): 235-244. |
[7] | 吴延鹏, 刘乾隆, 田东民, 陈凤君. 相变材料与热管耦合的电子器件热管理研究进展[J]. 化工学报, 2023, 74(S1): 25-31. |
[8] | 晁京伟, 许嘉兴, 李廷贤. 基于无管束蒸发换热强化策略的吸附热池的供热性能研究[J]. 化工学报, 2023, 74(S1): 302-310. |
[9] | 程成, 段钟弟, 孙浩然, 胡海涛, 薛鸿祥. 表面微结构对析晶沉积特性影响的格子Boltzmann模拟[J]. 化工学报, 2023, 74(S1): 74-86. |
[10] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[11] | 王玉兵, 李杰, 詹宏波, 朱光亚, 张大林. R134a在菱形离散肋微小通道内的流动沸腾换热实验研究[J]. 化工学报, 2023, 74(9): 3797-3806. |
[12] | 袁佳琦, 刘政, 黄锐, 张乐福, 贺登辉. 泡状入流条件下旋流泵能量转换特性研究[J]. 化工学报, 2023, 74(9): 3807-3820. |
[13] | 齐聪, 丁子, 余杰, 汤茂清, 梁林. 基于选择吸收纳米薄膜的太阳能温差发电特性研究[J]. 化工学报, 2023, 74(9): 3921-3930. |
[14] | 李科, 文键, 忻碧平. 耦合蒸气冷却屏的真空多层绝热结构对液氢储罐自增压过程的影响机制研究[J]. 化工学报, 2023, 74(9): 3786-3796. |
[15] | 陈天华, 刘兆轩, 韩群, 张程宾, 李文明. 喷雾冷却换热强化研究进展及影响因素[J]. 化工学报, 2023, 74(8): 3149-3170. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||