化工学报 ›› 2018, Vol. 69 ›› Issue (4): 1288-1298.DOI: 10.11949/j.issn.0438-1157.20171187
许文茸, 张洁, 郑凤昳, 张玉苍
收稿日期:
2017-08-29
修回日期:
2017-12-11
出版日期:
2018-04-05
发布日期:
2018-04-05
通讯作者:
张玉苍
基金资助:
海南省重点研发计划(ZDYF2017005);海南省自然科学基金项目(217008);海南省高等学校科学研究项目(Hnky2017-13)。
XU Wenrong, ZHANG Jie, ZHENG Fengyi, ZHANG Yucang
Received:
2017-08-29
Revised:
2017-12-11
Online:
2018-04-05
Published:
2018-04-05
Supported by:
supported by the Key Scientific Research Project Funding of Hainan Province (ZDYF2017005), the Natural Science Foundation of Hainan Province (217008) and the Scientific Research Project Funding of Hainan Higher Education Institution (Hnky2017-13).
摘要:
在过去的二十年里,利用常压催化液化法将木质生物质尤其是纤维素转化为小分子化学品的研究已经取得了一定的成果,近年来,常压催化液化法开始被应用于甲壳素生物质向小分子化学品转化的研究,极大地丰富了液化产物的种类尤其是含氮小分子化学品的类型。本文对常压下酸催化的纤维素与甲壳素在不同溶剂中液化生成的小分子化学品进行了总结,并重点对其液化机理的研究进展进行了阐述。提出了纤维素与甲壳素液化制备小分子化学品及机理研究中存在的一些问题及解决途径的建议,并对甲壳素的液化研究进行了展望。
中图分类号:
许文茸, 张洁, 郑凤昳, 张玉苍. 纤维素与甲壳素常压酸催化液化生成小分子化学品的机理研究进展[J]. 化工学报, 2018, 69(4): 1288-1298.
XU Wenrong, ZHANG Jie, ZHENG Fengyi, ZHANG Yucang. Research progress on mechanisms of acid-catalyzed cellulose and chitin liquefaction to small molecular chemicals under atmospheric pressure[J]. CIESC Journal, 2018, 69(4): 1288-1298.
[1] | VAN PUTTEN R J, VAN DER WAAL J C, DE JONG E, et al. Hydroxymethylfurfural, a versatile platform chemical made from renewable resources[J]. Chemical Reviews, 2013, 113(3):1499-1597. |
[2] | GANDINI A, LACERDA T M, CARVALHO A J F, et al. Progress of polymers from renewable resources:furans, vegetable oils, and polysaccharides[J]. Chemical Reviews, 2016, 116(3):1637-1669. |
[3] | LI C, ZHAO X, WANG A, et al. Catalytic transformation of lignin for the production of chemicals and fuels[J]. Chemical Reviews, 2015, 115(21):11559-11624. |
[4] | 李昌志, 王爱琴, 张涛. 离子液体介质中纤维素资源化研究进展[J]. 化工学报, 2013, 64(1):182-197. LI C Z, WANG A Q, ZHANG T. Progress of conversion of cellulose resource in ionic liquids[J]. CIESC Journal, 2013, 64(1):182-197. |
[5] | 张求慧. 生物质液化技术及应用[M]. 北京:化学工业出版社, 2013:2-4. ZHANG Q H. Biomass Liquefaction Technology and Application[M]. Beijing:Chemical Industry Press, 2013:2-4. |
[6] | WHETTEN R, SEDEROFF R. Lignin biosynthesis[J]. The Plant Cell, 1995, 7(7):1001-1013. |
[7] | YAN N, CHEN X. Don't waste seafood waste[J]. Nature, 2015, 524(7564):155-157. |
[8] | 高秀君, 闫培生. 海产品加工废弃物再利用研究进展[J]. 生物技术进展, 2014, 4(5):346-354. GAO X J, YAN P S. Progress of reutilization of seafood processing waste[J]. Current Biotechnology, 2014, 4(5):346-354. |
[9] | 孟繁蓉, 李瑞松, 张玉苍. 木质类废弃物液化及其高效利用研究进展[J]. 化工进展, 2016, 35(6):1905-1913. MENG F R, LI R S, ZHANG Y C. Research progress on liquefaction of lignocellulosic waste and its efficient application[J]. Chemical Industry and Engineering Progress, 2016, 35(6):1905-1913. |
[10] | KARGER J. Liquefaction of plant biomass for use in polymers-is it the right strategy?[J]. Express Polymer Letters, 2011, 5(2):92. |
[11] | ZHU Y, BIDDY M J, JONES S B, et al. Techno-economic analysis of liquid fuel production from woody biomass via hydrothermal liquefaction (HTL) and upgrading[J]. Applied Energy, 2014, 129(5):384-394. |
[12] | BENSAID S, CONTI R, FINO D. Direct liquefaction of ligno-cellulosic residues for liquid fuel production[J]. Fuel, 2012, 94(1):324-332. |
[13] | XU Y, YU H, HU X, et al. Bio-oil production from algae via thermochemical catalytic liquefaction[J]. Energy Sources, Part A, 2014, 36(1):38-44. |
[14] | 张志剑, 李鸿毅, 朱军. 废弃物生物质液化制取生物油的研究进展[J]. 环境污染与防治, 2014, 36(3):87-93. ZHANG Z J, LI H Y, ZHU J. Review and perspective on waste biomass liquefaction for bio-fuel[J]. Environmental Pollution and Control, 2014, 36(3):87-93. |
[15] | MATSON T D, BARTA K, IRETSKⅡ A V, et al. One-pot catalytic conversion of cellulose and of woody biomass solids to liquid fuels[J]. Journal of the American Chemical Society, 2011, 133(35):14090-14097. |
[16] | MILLER, AMP I J, FELLOWS S K. Liquefaction of biomass as a source of fuels or chemicals[J]. Nature, 1981, 289(5796):398-399. |
[17] | XU J, XIE X, WANG J, et al. Directional liquefaction coupling fractionation of lignocellulosic biomass for platform chemicals[J]. Green Chemistry, 2016, 18(10):3124-3138. |
[18] | HAKKI M, SALAN T, ALTUNTA? E, et al. Liquefaction processes of biomass for the production of valuable chemicals and biofuels:a review[C]//Proceedings of the Joint International Convention Forest Products Society and, Society of Wood Science and Technology, 2013. |
[19] | MILLER L J, FELLOWS S K. Liquefaction of biomass as a source of liquid fuels or chemicals[J]. Nature, 1981, 289:398-399. |
[20] | TRAN K Q. Fast hydrothermal liquefaction for production of chemicals and biofuels from wet biomass-the need to develop a plug-flow reactor[J]. Bioresource Technology, 2016, 213:327-332. |
[21] | PAN H. Synthesis of polymers from organic solvent liquefied biomass:a review[J]. Renewable & Sustainable Energy Reviews, 2011, 15(7):3454-3463. |
[22] | HU S, LUO X, LI Y. Polyols and polyurethanes from the liquefaction of lignocellulosic biomass[J]. ChemSusChem, 2014, 7(1):66-72. |
[23] | ZHANG W, ZHANG Y, ZHAO D. Synthesis of liquefied corn barn-based epoxy resins and their thermodynamic properties[J]. Journal of Applied Polymer Science, 2012, 125(3):2304-2311. |
[24] | LI W, ZHANG Y C, LAO B S. Preparation and properties of liquefied banana pseudo-stem based PVAc membrane[J]. Bioresources, 2015, 10(3):4519-4529. |
[25] | ROSLAN R, ZAKARIA S, CHINHUA C, et al. Physico-mechanical properties of resol phenolic adhesives derived from liquefaction of oil palm empty fruit bunch fibres[J]. Industrial Crops & Products, 2014, 62(62):119-124. |
[26] | PIERSON Y, CHEN X, BOBBINK F D, et al. Acid-catalyzed chitin liquefaction in ethylene glycol[J]. ACS Sustainable Chemistry & Engineering, 2014, 2(8):2081-2089. |
[27] | ZHANG J, YAN N. Formic acid-mediated liquefaction of chitin[J]. Green Chemistry, 2016, 18(18):5050-5058. |
[28] | 张洁, 许文茸, 张玉苍, 等. 甲壳素的液化反应及其动力学模拟[J]. 化工进展, 2017, 36(8):3085-3091. ZHANG J, XU W R, ZHANG Y C, et al. Chitin liquefaction and kinetics[J]. Chemical Industry and Engineering Progress, 2017, 36(8):3085-3091. |
[29] | ZHANG J, XU W R, ZHANG Y C, et al. Liquefied chitin/polyvinyl alcohol based blend membranes:preparation and characterization and antibacterial activity[J]. Carbohydrate Polymers, 2018, 180:175-181. |
[30] | O'SULLIVAN A C. Cellulose:the structure slowly unravels[J]. Cellulose, 1997, 4(3):173-207. |
[31] | NISHIYAMA Y, LANGAN P, WADA M, et al. Looking at hydrogen bonds in cellulose[J]. Acta Crystallographica Section D, 2010, 66(11):1172-1177. |
[32] | 高延东, 周梦怡. 纤维素溶解研究进展[J]. 造纸科学与技术, 2013, 32(4):41-46. GAO Y D, ZHOU M Y. Research progress in cellulose dissolving[J]. Paper Science & Technology, 2013, 32 (4):41-46. |
[33] | CHEN X, YANG H, YAN N. Shell biorefinery:dream or reality?[J]. Chemistry-a European Journal, 2016, 22(38):13402-13421. |
[34] | PIERSON Y, BOBBINK F, YAN N. Alcohol mediated liquefaction of lignocellulosic materials:a mini review[J]. Chemical Engineering & Process Techniques, 2013, 1(2):1014. |
[35] | ZHANG T, ZHOU Y, LIU D, et al. Qualitative analysis of products formed during the acid catalyzed liquefaction of bagasse in ethylene glycol[J]. Bioresource Technology, 2007, 98(7):1454-1459. |
[36] | JASIUKAITYT? E, KUNAVER M, STRLI? M. Cellulose liquefaction in acidified ethylene glycol[J]. Cellulose, 2009, 16(3):393-405. |
[37] | KR?AN A, ?AGAR E. Microwave driven wood liquefaction with glycols[J]. Bioresource Technology, 2009, 100(12):3143-3146. |
[38] | YAMADA T, ARATANI M, KUBO S, et al. Chemical analysis of the product in acid-catalyzed solvolysis of cellulose using polyethylene glycol and ethylene carbonate[J]. Journal of Wood Science, 2007, 53(6):487-493. |
[39] | KOSMELA P, HEJNA A, FORMELA K, et al. Biopolyols obtained via crude glycerol-based liquefaction of cellulose:their structural, rheological and thermal characterization[J]. Cellulose, 2016, 23(5):2929-2942. |
[40] | YAMADA T, ONO H. Rapid liquefaction of lignocellulosic waste by using ethylenecarbonate[J]. Bioresource Technology, 1999, 70(1):61-67. |
[41] | ZHANG Y, IKEDA A, HORI N, et al. Characterization of liquefied product from cellulose with phenol in the presence of sulfuric acid[J]. Bioresource Technology, 2006, 97(2):313-321. |
[42] | MUN S P, JANG J P. Liquefaction of cellulose in the presence of phenol using p-toluene sulfonic acid as a catalyst[J]. Journal of Industrial and Engineering Chemistry, 2009, 15(5):743-747. |
[43] | JASIUKAITYTE E, KUNAVER M, STRLIC M. Cellulose liquefaction in acidified ethylene glycol[J]. Cellulose, 2009, 16(3):393-405. |
[44] | KRZAN A, KUNAVER M, TISLER V. Wood liquefaction using dibasic organic acids and glycols[J]. Acta Chimica Slovenica, 2005, 52:253-258. |
[45] | FENG H, ZHENG Z F, HUANG Y B, et al. Liquefaction of cellulose in the presence of phenol and main reaction pathway of its liquefied products[J]. Advanced Materials Research, 2011, 236-238:334-340. |
[46] | YAMADA T, ONO H. Characterization of the products resulting from ethylene glycol liquefaction of cellulose[J]. Journal of Wood Science, 2001, 47(6):458-464. |
[47] | AMARASEKARA A S, WIREDU B. Acidic ionic liquid catalyzed liquefaction of cellulose in ethylene glycol; identification of a new cellulose derived cyclopentenone derivative[J]. Ind. Eng. Chem. Res., 2015, 54(3):824-831. |
[48] | 陈秋玲, 谷俊杰, 孙可伟, 等. 植物纤维多羟基醇的液化机理[J]. 高分子材料科学与工程, 2013, 29(5):125-128. CHEN Q L, GU J J, SUN K W, et al. Liquefaction mechanism of plant fiber in polyhydric alcohol[J]. Polymer Materials Science & Engineering, 2013, 29(5):125-128. |
[49] | LIN L, YAO Y, YOSHIOKA M, et al. Liquefaction mechanism of cellulose in the presence of phenol under acid catalysis[J]. Carbohydrate Polymers, 2004, 57(2):123-129. |
[50] | 康鹏, 王侃, 方灵丹. 烷基糖苷的合成及应用特点[J]. 中国洗涤用品工业, 2016, (8):32-41. KANG P, WANG K, FANG L D. Synthesis and application of APG[J]. China Cleaning Industry, 2016, (8):32-41. |
[51] | 郭贵全, 卢卓敏, 谌凡更. 植物纤维液化制备高分子材料研究进展[J]. 高分子材料科学与工程, 2005, 21(1):34-38. GUO G Q, LU Z M, CHEN F G. The advance of studying on polymer materials make by liquefied lignocellulosic fiber[J]. Polymer Materials Science & Engineering, 2005, 21(1):34-38. |
[52] | HAYES D J. An examination of biorefining processes, catalysts and challenges[J]. Catalysis Today, 2009, 145(1):138-151. |
[53] | 张贤梅. 乙酰丙酸薄荷酯的研究[J]. 轻工科技, 2015, (7):46-47. ZHANG X M. Study on menthyl levulinate[J]. China Food Additives, 2015, (7):46-47. |
[54] | 张文明, 孙岩峰, 李阳, 等. 秸秆液化物环氧树脂胶粘剂的制备与表征[J]. 高分子材料科学与工程, 2009, 25(6):139-142. ZHANG W M, SUN Y F, LI Y, et al. Synthesis and characterization of liquefied corn-straw-based epoxy resin[J]. Polymer Materials Science & Engineering, 2009, 25(6):139-142. |
[55] | WANG M, XU C, LEITCH M. Liquefaction of cornstalk in hot-compressed phenol-water medium to phenolic feedstock for the synthesis of phenol-formaldehyde resin[J]. Bioresource Technology, 2009, 100(7):2305-2307. |
[56] | TIMELL T E. The acid hydrolysis of glycosides(Ⅰ):General conditions and the effect of the nature of the aglycone[J]. Canadian Journal of Chemistry, 1964, 42(6):1456-1472. |
[57] | ANTAL M J Jr, MOK W S L, RICHARDS G N. Mechanism of formation of 5-(hydroxymethyl)-2-furaldehyde from D-fructose and sucrose[J]. Carbohydrate Research, 1990, 199(1):91-109. |
[58] | GRISEL R J H, WAAL J C V D, JONG E D, et al. Acid catalysed alcoholysis of wheat straw:towards second generation furan-derivatives[J]. Catalysis Today, 2014, 223(223):3-10. |
[59] | IKAN R, IOSELIS P, RUBINSZTAIN Y, et al. Chemical, isotopic, spectroscopic and geochemical aspects of natural and synthetic humic substances[J]. Science of The Total Environment, 1992, 117:1-12. |
[60] | HORVAT J, KLAI? B, METELKO B, et al. Mechanism of levulinic acid formation[J]. Tetrahedron Letters, 1985, 26(17):2111-2114. |
[61] | 王伟, 闫秀懿, 张磊, 等. 木质纤维素生物质水热液化的研究进展[J]. 化工进展, 2016, 35(2):453-462. WANG W, YAN X Y, ZHANG L, et al. Research progress of hydrothermal liquefaction of lignocellulosic biomass[J]. Chemical Industry and Engineering Progress, 2016, 35(2):453-462. |
[62] | 刘玉环, 王应宽, 阮榕生, 等. 玉米秸秆常压快速液化最佳工艺参数研究[J]. 农业机械学报, 2012, 43(8):110-115. LIU Y H, WANG Y K, RUAN R S, et al. Optimization of processing for rapid liquefaction if corn stover under atmospheric pressure[J]. Transactions of the Chinese Society for Agricultural Machinery, 2012, 43(8):110-115. |
[1] | 郑佳丽, 李志会, 赵新强, 王延吉. 离子液体催化合成2-氰基呋喃反应动力学研究[J]. 化工学报, 2023, 74(9): 3708-3715. |
[2] | 车睿敏, 郑文秋, 王小宇, 李鑫, 许凤. 基于离子液体的纤维素均相加工研究进展[J]. 化工学报, 2023, 74(9): 3615-3627. |
[3] | 杨百玉, 寇悦, 姜峻韬, 詹亚力, 王庆宏, 陈春茂. 炼化碱渣湿式氧化预处理过程DOM的化学转化特征[J]. 化工学报, 2023, 74(9): 3912-3920. |
[4] | 陈佳起, 赵万玉, 姚睿充, 侯道林, 董社英. 开心果壳基碳点的合成及其对Q235碳钢的缓蚀行为研究[J]. 化工学报, 2023, 74(8): 3446-3456. |
[5] | 牛超, 沈胜强, 杨艳, 潘泊年, 李熠桥. 甲烷BOG喷射器流动过程计算与性能分析[J]. 化工学报, 2023, 74(7): 2858-2868. |
[6] | 陈吉, 洪泽, 雷昭, 凌强, 赵志刚, 彭陈辉, 崔平. 基于分子动力学的焦炭溶损反应及其机理研究[J]. 化工学报, 2023, 74(7): 2935-2946. |
[7] | 吴文涛, 褚良永, 张玲洁, 谭伟民, 沈丽明, 暴宁钟. 腰果酚生物基自愈合微胶囊的高效制备工艺研究[J]. 化工学报, 2023, 74(7): 3103-3115. |
[8] | 董茂林, 陈李栋, 黄六莲, 吴伟兵, 戴红旗, 卞辉洋. 酸性助水溶剂制备木质纳米纤维素及功能应用研究进展[J]. 化工学报, 2023, 74(6): 2281-2295. |
[9] | 崔张宁, 胡紫璇, 吴雷, 周军, 叶干, 刘田田, 张秋利, 宋永辉. 可降解纤维素基材料的耐水性能研究进展[J]. 化工学报, 2023, 74(6): 2296-2307. |
[10] | 杨峥豪, 何臻, 常玉龙, 靳紫恒, 江霞. 生物质快速热解下行式流化床反应器研究进展[J]. 化工学报, 2023, 74(6): 2249-2263. |
[11] | 李瑞康, 何盈盈, 卢维鹏, 王园园, 丁皓东, 骆勇名. 电化学强化钴基阴极活化过一硫酸盐的研究[J]. 化工学报, 2023, 74(5): 2207-2216. |
[12] | 葛泽峰, 吴雨青, 曾名迅, 查振婷, 马宇娜, 侯增辉, 张会岩. 灰化学成分对生物质气化特性的影响规律[J]. 化工学报, 2023, 74(5): 2136-2146. |
[13] | 龙臻, 王谨航, 何勇, 梁德青. 离子液体与动力学抑制剂作用下混合气体水合物生成特性研究[J]. 化工学报, 2023, 74(4): 1703-1711. |
[14] | 吴学红, 栾林林, 陈亚南, 赵敏, 吕财, 刘勇. 可降解柔性相变薄膜的制备及其热性能[J]. 化工学报, 2023, 74(4): 1818-1826. |
[15] | 包嘉靖, 别洪飞, 王子威, 肖睿, 刘冬, 吴石亮. 正庚烷对冲扩散火焰中添加长链醚类对碳烟前体生成特性的影响[J]. 化工学报, 2023, 74(4): 1680-1692. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||