[1] |
DAVID K, MILENA H, NICOLA P, et al. Contribution of contaminated sites to the global mercury budget[J]. Environ. Res., 2013, 125:160-170.
|
[2] |
ZHANG X, SHEN B, SHEN F, et al. The behavior of the manganese-cerium loaded metal-organic framework in elemental mercury and NO removal from flue gas[J]. Chem. Eng. J., 2017, 326:551-560.
|
[3] |
XU Y, ZHONG Q, LIU X. Elemental mercury oxidation and adsorption on magnesite powder modified by Mn at low temperature[J]. J. Hazard. Mater., 2015, 283:252-259.
|
[4] |
ZHAO Y, MA X, XU P, et al. Elemental mercury removal from flue gas by CoFe2O4 catalyzed peroxymonosulfate[J]. J. Hazard. Mater., 2018, 341:228-237.
|
[5] |
ZHENG J, OU J, MO Z, et al. Mercury emission inventory and its spatial characteristics in the pearl river delta region, China[J]. Sci. Total Environ., 2011, 412:214-222.
|
[6] |
谭增强, 邱建荣, 苏胜, 等. 高效脱汞吸附剂的脱汞机理研究[J]. 工程热物理学报, 2012, 33(2):343-347. TAN Z Q, QIU J R, SU S, et al. Study on the mercury removal mechanism of adsorbents[J]. J. Eng. Therm., 2012, 33(2):343-347.
|
[7] |
LI H, ZHU L, WU S, et al. Synergy of CuO and CeO2 combination for mercury oxidation under low-temperature selective catalytic reduction atmosphere[J]. Int. J. Coal Geol., 2017, 170:69-76.
|
[8] |
XU H, QU Z, ZONG C, et al. Catalytic oxidation and adsorption of Hg0 over low-temperature NH3-SCR LaMnO3 perovskite oxide from flue gas[J]. Appl. Catal. B, 2016, 186:30-40.
|
[9] |
LI H, ZHANG W, WANG J, et al. Coexistence of enhanced Hg0 oxidation and induced Hg2+ reduction on CuO/TiO2 catalyst in the presence of NO and NH3[J]. Chem. Eng. J., 2017, 330:1248-1254.
|
[10] |
LI H, WU S, WU C, et al. SCR atmosphere induced reduction of oxidized mercury over CuO-CeO2/TiO2 catalyst[J]. Environ. Sci. Technol., 2015, 49(12):7373-7379.
|
[11] |
李春峰, 段钰锋, 汤红健, 等. CaO对汞的选择性吸附及SO2毒化特性[J]. 化工学报, 2017, 68(9):3565-3572. LI C F, DUAN Y F, TANG H J, et al. Mercury selective adsorption characteristics and SO2 poison performance on CaO[J]. CIESC Journal, 2017, 68(9):3565-3572.
|
[12] |
HE D, WONG C E, TANG W, et al. Faradaic reactions in water desalination by batch-mode capacitive deionization[J]. Environ. Sci. Technol., 2016, 3(5):222-226.
|
[13] |
HAO R, ZHAO Y, YUAN B, et al. Establishment of a novel advanced oxidation process for economical and effective removal of SO2 and NO[J]. J. Hazard. Mater., 2016, 318:224-232.
|
[14] |
MICOLI L, BAGNASCO G, TURCO M, et al. Vapour phase H2O2 decomposition on Mn based monolithic catalysts synthesized by innovative procedures[J]. Appl. Catal. B, 2013, 140/141:516-522.
|
[15] |
DING J, ZHONG Q, ZHANG S, et al. Simultaneous removal of NOx and SO2 from coal-fired flue gas by catalytic oxidation-removal process with H2O2[J]. Chem. Eng. J., 2014, 243:176-182.
|
[16] |
LIU Y, YUSUF G A. A review on removal of elemental mercury from flue gas using advanced oxidation process:chemistry and process[J]. Chem. Eng. Res. Des., 2016, 112:199-250.
|
[17] |
ZHOU C, SUN L, ZHANG A, et al. Fe3-xCuxO4 as highly active heterogeneous Fenton-like catalysts toward elemental mercury removal[J]. Chemosphere, 2015, 125:16-24.
|
[18] |
XU Y, CAO L M, SUN W, et al. In-situ catalytic oxidation of Hg0 via a gas diffusion electrode[J]. Chem. Eng. J., 2017, 310:170-178.
|
[19] |
HAO R, ZHAO Y. Macrokinetics of NO oxidation by vaporized H2O2 association with ultraviolet light[J]. Energy Fuels, 2016, 30:2365-2372.
|
[20] |
FARIBA S, ALI R, ABDOLHOSSAIN M, et al. Green oxidation of alcohols by using hydrogen peroxide in water in the presence of magnetic Fe3O4 nanoparticles as recoverable catalyst[J]. Green Chem. Lett. Rev., 2014, 7(3):257-264.
|
[21] |
周长松, 孙路石, 张安超, 等. 非均相类Fenton催化剂脱汞的实验与机理[J]. 化工学报, 2015, 66(4):1324-1330. ZHOU C S, SUN L S, ZHANG A C, et al. Catalytic removal of Hg0 in flue gas by heterogeneous Fenton-like catalysts[J]. CIESC Journal, 2015, 66(4):1324-1330.
|
[22] |
HUNG C M, CHEN C W, JHUANG Y Z, et al. Fe3O4 magnetic nanoparticles:characterization and performance exemplified by the degradation of methylene blue in the presence of persulfate[J]. J. Adv. Oxid. Technol., 2016, 19(1):43-51.
|
[23] |
JUNGHYUN N, OSMAN I O, SAADULLAH G A, et al. Magnetite Fe3O4 (111) surfaces:impact of defects on structure, stability, and electronic properties[J]. Chem. Mater., 2015, 27(17):5856-5867.
|
[24] |
陈磊, 倪刚, 韩波, 等. Fe3O4 (111)面上的水煤气变换反应机理[J]. 化学学报, 2011, 69(4):393-398. CHEN L, NI G, HAN B, et al. Mechanism of water gas shift reaction on Fe3O4 (111) surface[J]. Acta Chimica Sinica, 2011, 69(4):393-398.
|
[25] |
YANG T, WEN X, REN J, et al. Surface structures of Fe3O4 (111), (110), and (001):a density functional theory study[J]. J. Fuel Chem. Technol., 2010, 38(1):121-128.
|
[26] |
呼小红. 金属氧化物催化臭氧生成羟基自由基机理理论研究[D]. 哈尔滨:哈尔滨工业大学, 2013. HU X H. Mechanism study of hydroxyl radical generation from ozone catalyzed by metal oxide[D]. Harbin:Harbin Institute of Technology, 2013.
|
[27] |
PAYNE M C, ALLAN D C, ARIAS T A, et al. Iterative minimization echniques for ab initio total-energy calculations:molecular dynamics and conjugate gradients[J]. Rev. Mod. Phys., 1992, 64(4):1045-1097.
|
[28] |
PERDEW J P, CHEVARY J A, VOSKO S H, et al. Atoms, molecules, solids, and surfaces:applications of the generalized gradient approximation for exchange and correlation[J]. Phys. Rev. B, 1992, 46:6671-6687.
|
[29] |
LI X, PAIER J. Adsorption of water on the Fe3O4 (111) surface:structures, stabilities, and vibrational properties studied by density functional theory[J]. J. Phys. Chem. C, 2016, 120(2):1056-1065.
|
[30] |
ZHOU C, ZHANG Q, CHEN L, et al. Density functional theory study of water dissociative chemisorption on the Fe3O4 (111) surface[J]. J. Phys. Chem. C, 2010, 114:21405-21410.
|
[31] |
SOMMAR J, GARDFELDT K, DAN S, et al. A kinetic study of the gas-phase reaction between the hydroxyl radical and atomic mercury[J]. Atmos. Environ., 2001, 35(17):3049-3054.
|
[32] |
GUO P, GUO X, ZHENG C G. Roles of γ-Fe2O3 in fly ash for mercury removal:results of density functional theory study[J]. Appl. Surf. Sci., 2010, 256:6991-6996.
|