[1] |
SARAFRAZ M M, HORMOZI F. Pool boiling heat transfer to dilute copper oxide aqueous nanofluids[J]. International Journal of Thermal Sciences, 2015, 90:224-237.
|
[2] |
LITER, S G, KAVIANY M. Pool-boiling CHF enhancement by modulated porous-layer coating:theory and experiment[J]. International Journal of Heat and Mass Transfer, 2001, 44(22):4287-4311.
|
[3] |
MA X, CHENG P, GONG S, et al. Mesoscale simulations of saturated pool boiling heat transfer under microgravity conditions[J]. International Journal of Heat & Mass Transfer, 2017, 114:453-457.
|
[4] |
SAEIDI D, ALEMRAJABI A A, SAEIDI N. Experimental study of pool boiling characteristic of an aluminized copper surface[J]. International Journal of Heat & Mass Transfer, 2015, 85:239-246.
|
[5] |
FRITZ W. Berechnung des maximal volume von dampfblasen[J]. Phys. Z., 1935, 36:379-388.
|
[6] |
KOCAMUSTAFAOGULLARI G. Pressure dependence of bubble departure diameter for water[J]. International Communications in Heat and Mass Transfer, 1983, 10(6):501-509.
|
[7] |
HSU Y Y. On the size range of active nucleation cavities on a heating surface[J]. Journal of Heat Transfer, 1962, 84(3):207-213.
|
[8] |
CORTY C, FOUST A S. Surface variables in nucleate boiling[C]//Chemical Engineering Progress Symposium Series.1955.
|
[9] |
TONG W, BAR-COHEN A, SIMON T W, et al. Contact angle effects on boiling incipience of highly-wetting liquids[J]. International Journal of Heat and Mass Transfer, 1990, 33(1):91-103.
|
[10] |
CORNWELL K. On boiling incipience due to contact angle hysteresis[J]. International Journal of Heat and Mass Transfer, 1982, 25(2):205-211.
|
[11] |
MADADNIA J, KOOSHA H. Electrohydrodynamic effects on characteristic of isolated bubbles in the nucleate pool boiling regime[J]. Experimental Thermal and Fluid Science, 2003, 27(2):145-150.
|
[12] |
MCHALE J P, GARIMELLA S V. Bubble nucleation characteristics in pool boiling of a wetting liquid on smooth and rough surfaces[J]. International Journal of Multiphase Flow, 2010, 36(4):249-260.
|
[13] |
PAZ C, CONDE M, PORTEIRO J, et al. Effect of heating surface morphology on the size of bubbles during the subcooled flow boiling of water at low pressure[J]. International Journal of Heat and Mass Transfer, 2015, 89:770-782.
|
[14] |
IBRAHIM E A, JUDD R L. An experimental investigation of the effect of subcooling on bubble growth and waiting time in nucleate boiling[J]. Journal of Heat Transfer, 1985, 107(1):168-174.
|
[15] |
GOEL P, NAYAK A K, KULKARNI P P, et al. Experimental study on bubble departure characteristics in subcooled nucleate pool boiling[J]. International Journal of Multiphase Flow, 2017, 89:163-176.
|
[16] |
RAGHUPATHI P A, KANDLIKAR S G. Bubble growth and departure trajectory under asymmetric temperature conditions[J]. International Journal of Heat & Mass Transfer, 2016, 95:824-832.
|
[17] |
GAO M, CHENG P, QUAN X. An experimental investigation on effects of an electric field on bubble growth on a small heater in pool boiling[J]. International Journal of Heat and Mass Transfer, 2013, 67:984-991.
|
[18] |
HAMZEKHANI S, FALAHIEH M M, AKBARI A. Bubble departure diameter in nucleate pool boiling at saturation:pure liquids and binary mixtures[J]. International Journal of Refrigeration, 2014, 46:50-58.
|
[19] |
KANDLIKAR S G. Controlling bubble motion over heated surface through evaporation momentum force to enhance pool boiling heat transfer[J]. Applied Physics Letters, 2013, 102(5):051611.
|
[20] |
ALAM T, KHAN A S, LI W, et al. Transient force analysis and bubble dynamics during flow boiling in silicon nanowire microchannels[J]. International Journal of Heat and Mass Transfer, 2016, 101:937-947.
|
[21] |
THOME J R, CIONCOLINI A. Unified modeling suite for two-phase flow, convective boiling, and condensation in macro-and microchannels[J]. Heat Transfer Engineering, 2016, 37(13/14):1148-1157.
|
[22] |
YIN L, JIA L. Confined characteristics of bubble during boiling in microchannel[J]. Experimental Thermal and Fluid Science, 2016, 74:247-256.
|
[23] |
WANG Y, SEFIANE K. Single bubble geometry evolution in microscale space[J]. International Journal of Thermal Sciences, 2013, 67:31-40.
|
[24] |
XU J, JI X, ZHANG W, et al. Pool boiling heat transfer of ultra-light copper foam with open cells[J]. International Journal of Multiphase Flow, 2008, 34(11):1008-1022.
|
[25] |
YANG Y, JI X, XU J. Pool boiling heat transfer on copper foam covers with water as working fluid[J]. International Journal of Thermal Sciences, 2010, 49(7):1227-1237.
|
[26] |
XU Z G, QU Z G, ZHAO C Y, et al. Experimental correlation for pool boiling heat transfer on metallic foam surface and bubble cluster growth behavior on grooved array foam surface[J]. International Journal of Heat and Mass Transfer, 2014, 77:1169-1182.
|
[27] |
XU Z G, ZHAO C Y. Enhanced boiling heat transfer by gradient porous metals in saturated pure water and surfactant solutions[J]. Applied Thermal Engineering, 2016, 100:68-77.
|
[28] |
KESHOCK E G, SIEGEL R. Force acting on bubbles in nucleate boiling under normal and reduced gravity conditions[R].National Aeronautics and Space Administration. Cleveland, 1964.
|
[29] |
THORNCROFT G E, KLAUSNER J F. Bubble forces and detachment models[J]. Multiphase Science and Technology, 2001, 13(3/4):35-76.
|
[30] |
KANDLIKAR S G. Scale effects on flow boiling heat transfer in microchannels:a fundamental perspective[J]. International Journal of Thermal Sciences, 2010, 49(7):1073-1085.
|