化工学报 ›› 2019, Vol. 70 ›› Issue (1): 290-297.DOI: 10.11949/j.issn.0438-1157.20180646
周孙希1,2(),章学来1(),刘升2,陈启杨1,徐笑锋1,王迎辉1
收稿日期:
2018-06-12
修回日期:
2018-10-08
出版日期:
2019-01-05
发布日期:
2019-01-05
通讯作者:
章学来
作者简介:
周孙希(1994—),男,硕士研究生,<email>1373988947@qq.com</email>|章学来(1964—),男,博士,教授,<email>xlzhang@shmtu.edu.cn</email>
基金资助:
Sunxi ZHOU1,2(),Xuelai ZHANG1(),Sheng LIU2,Qiyang CHEN1,Xiaofeng XU1,Yinghui WANG1
Received:
2018-06-12
Revised:
2018-10-08
Online:
2019-01-05
Published:
2019-01-05
Contact:
Xuelai ZHANG
摘要:
为了寻求温度段在2~3℃的低温相变材料,采用低共熔法,以理论计算为基础制备了癸醇-棕榈酸(DA-PA)二元复合相变材料。为提高其热导率,利用膨胀石墨(EG)的多孔特性,制备了最佳质量比为15∶1的DA-PA/EG复合相变材料。通过DSC、步冷曲线、红外光谱测试、SEM、Hot Disk热常数分析、高低温循环实验对复合相变材料的结构和性能进行了研究。实验结果表明,当DA-PA质量比为97.8∶2.2时的低共熔温度为2.9℃,相变潜热为203.6 J·g-1。真空吸附后DA-PA被均匀地包裹在EG的多孔网状结构中,DA-PA/EG的相变温度为2.7℃,相变潜热为193.9 J·g-1,热导率为1.416 W·(m·K)-1,相比DA-PA提高了4.3倍。经过100次高低温循环后,DA-PA/EG仍保持良好的稳定性,在冷链物流中有较大的应用价值。
中图分类号:
周孙希, 章学来, 刘升, 陈启杨, 徐笑锋, 王迎辉. 癸醇-棕榈酸/膨胀石墨低温复合相变材料的制备与性能[J]. 化工学报, 2019, 70(1): 290-297.
Sunxi ZHOU, Xuelai ZHANG, Sheng LIU, Qiyang CHEN, Xiaofeng XU, Yinghui WANG. Preparation and properties of decyl alcohol-palmitic acid/expanded graphite low temperature composite phase change material[J]. CIESC Journal, 2019, 70(1): 290-297.
Equipment | Model | Accuracy |
---|---|---|
precision electronic balance | MSl05DU | ±0.01 mg |
magnetic stirrer | HJ-6A | — |
cryogenic bath | DC-6515 | ±0.1℃ |
Agilent data acquisition instrument | 34972A | ±0.01℃ |
differential scanning calorimetry(DSC) | DSC200F3 | temperature<0.1℃, enthalpy<0.1% |
hot disk thermal constant analyzer | TPS500 | <2% |
electron microscope scanner(SEM) | KYKY-EM6000 | — |
box resistance furnace | SX2-4-10A | — |
vacuum drying oven | DZF-6020 | — |
Fourier infrared spectrometer | TENSOR37 | — |
high and low temperature alternating box | YSGJW-100C | ±0.5℃ |
表1 实验仪器
Table 1 Experimental instruments
Equipment | Model | Accuracy |
---|---|---|
precision electronic balance | MSl05DU | ±0.01 mg |
magnetic stirrer | HJ-6A | — |
cryogenic bath | DC-6515 | ±0.1℃ |
Agilent data acquisition instrument | 34972A | ±0.01℃ |
differential scanning calorimetry(DSC) | DSC200F3 | temperature<0.1℃, enthalpy<0.1% |
hot disk thermal constant analyzer | TPS500 | <2% |
electron microscope scanner(SEM) | KYKY-EM6000 | — |
box resistance furnace | SX2-4-10A | — |
vacuum drying oven | DZF-6020 | — |
Fourier infrared spectrometer | TENSOR37 | — |
high and low temperature alternating box | YSGJW-100C | ±0.5℃ |
Proportion (DA-PA:EG) | Before heat treatment/g | After heat treatment/g | Mass loss/g | Percentage loss/% |
---|---|---|---|---|
10:1 | 0.40 | 0.398 | 0.002 | 0.50 |
11:1 | 0.40 | 0.398 | 0.002 | 0.50 |
12:1 | 0.40 | 0.398 | 0.002 | 0.50 |
13:1 | 0.40 | 0.397 | 0.003 | 0.75 |
14:1 | 0.40 | 0.396 | 0.004 | 1.00 |
15:1 | 0.40 | 0.396 | 0.004 | 1.00 |
16:1 | 0.40 | 0.374 | 0.026 | 6.50 |
17:1 | 0.40 | 0.372 | 0.028 | 7.00 |
18:1 | 0.40 | 0.358 | 0.042 | 10.5 |
19:1 | 0.40 | 0.351 | 0.049 | 12.25 |
20:1 | 0.40 | 0.343 | 0.057 | 14.25 |
21:1 | 0.40 | 0.326 | 0.074 | 18.50 |
表2 不同比例样品热处理前后质量变化
Table 2 Sample quality changes before and after heat treatment in different proportions
Proportion (DA-PA:EG) | Before heat treatment/g | After heat treatment/g | Mass loss/g | Percentage loss/% |
---|---|---|---|---|
10:1 | 0.40 | 0.398 | 0.002 | 0.50 |
11:1 | 0.40 | 0.398 | 0.002 | 0.50 |
12:1 | 0.40 | 0.398 | 0.002 | 0.50 |
13:1 | 0.40 | 0.397 | 0.003 | 0.75 |
14:1 | 0.40 | 0.396 | 0.004 | 1.00 |
15:1 | 0.40 | 0.396 | 0.004 | 1.00 |
16:1 | 0.40 | 0.374 | 0.026 | 6.50 |
17:1 | 0.40 | 0.372 | 0.028 | 7.00 |
18:1 | 0.40 | 0.358 | 0.042 | 10.5 |
19:1 | 0.40 | 0.351 | 0.049 | 12.25 |
20:1 | 0.40 | 0.343 | 0.057 | 14.25 |
21:1 | 0.40 | 0.326 | 0.074 | 18.50 |
1 | 张仁元. 相变材料与相变储能技术[M]. 北京: 科学出版社, 2009: 2. |
ZhangR Y. Phase Change Materials and Phase Change Energy Storage Technology [M].Beijing: Science Press, 2009: 2. | |
2 | HasanM I, BashirH O, ShadhanA O. Experimental investigation of phase change materials for insulation of residential buildings[J]. Sustainable Cities & Society, 2018, 36(10): 42-58. |
3 | LaaouatniA, MartajN, BennacerR, et al. Phase change materials for improving the building thermal inertia[J]. Energy Procedia, 2017, 139(11): 744-749. |
4 | AhmedA, SiddiqueA K, LudwigN, et al. Design and optimization of a hybrid air conditioning system with thermal energy storage using phase change composite[J]. Energy Conversion and Management, 2018, 169(5): 404-418. |
5 | 唐恒博, 武卫东, 苗朋柯, 等. 空调用二元有机相变蓄冷材料的理论预测与研究[J]. 化工新型材料, 2016, 44(3): 121-123. |
TangH B, WuW D, MiaoP K, et al. Theoretical prediction and research of binary organic phase change cold storage materials for air conditioning [J]. New Chemical Materials, 2016, 44(3): 121-123. | |
6 | KazemB, MahdiK, SeyedA K, et al.The experimental appraisement of the effect of energy storage on the performance of solar chimney using phase change material[J]. Solar Energy, 2018, 169(5): 411-423. |
7 | SuD, JiaY, LinY, et al. Maximizing the energy output of a photovoltaic–thermal solar collector incorporating phase change materials[J]. Energy & Buildings, 2017, 153(8): 382-391. |
8 | 章学来, 陈裕丰, 曾涛, 等. 医药冷链物流用相变材料的研制[J]. 制冷与空调, 2017, 17(7): 43-46. |
ZhangX L, ChenY F, ZengT, et al. Development of phase change materials for pharmaceutical cold chain logistics[J]. Refrigeration and Air-conditioning, 2017, 17(7): 43-46. | |
9 | MeloneL, AltomareL, CigadaA, et al. Phase change material cellulosic composites for the cold storage of perishable products: from material preparation to computational evaluation[J]. Applied Energy, 2012, 89(1): 339-346. |
10 | 谭爱龄, 陈璐, 柳建良. 高吸水性树脂复合相变材料的冻融特性[J]. 化工进展, 2011, 30(10): 2262-2265. |
TanA L, ChenL, LiuJ L. Freeze-thaw characteristics of superabsorbent resin composite phase change materials[J]. Chemical Industry and Engineering Progress, 2011, 30(10): 2262-2265. | |
11 | 陈爱英, 汪学英, 曹学增. 相变储能材料的研究进展与应用[J]. 材料导报, 2003, 17(5): 42-44. |
ChenA Y, WangX Y, CaoX Z. Research progress and application of phase change materials for energy storage[J]. Material Review, 2003, 17(5): 42-44. | |
12 | 曾翠华, 张仁元. 无机水合盐相变储热材料的过冷性研究[J]. 能源研究与信息, 2005, 21(1): 44-49. |
ZengC H, ZhangR Y. Study on subcooling property of inorganic hydrated salt phase change thermal storage materials[J]. Energy Research and Information, 2005, 21(1): 44-49. | |
13 | 张奕, 张小松. 有机相变材料储能的研究和进展[J]. 太阳能学报, 2006, 27(7): 725-730. |
ZhangY, ZhangX S. Research and development of organic phase change material energy storage[J]. Chinese Journal of Solar Energy, 2006, 27(7): 725-730. | |
14 | 张爱军, 孙志高, 蔡伟, 等. 二元有机复合相变材料性能实验研究[J]. 化工新型材料, 2016, 44(7): 127-129. |
ZhangA J, SunZ G, CaiW, et al. Experimental study on the properties of binary organic composite phase change materials[J]. New Chemical Materials, 2016, 44(7): 127-129. | |
15 | 蔡伟, 孙志高, 马鸿凯, 等. 月桂酸-十四醇二元复合相变材料的相变特性[J]. 太阳能学报, 2017, 38(9): 2493-2497. |
CaiW, SunZ G, MaH K, et al. Phase transition properties of lauric acid-tetradecanol binary composite phase change materials[J]. Journal of Solar Energy, 2017, 38(9): 2493-2497. | |
16 | 袁艳平, 白力, 牛犇. 脂肪酸二元低共熔混合物相变温度和潜热的理论预测[J]. 材料导报, 2010, 24(2): 111-113. |
YuanY P, BaiL, NiuB. Theoretical prediction of phase transition temperature and latent heat of fatty acid binary eutectic mixtures[J]. Material Review, 2010, 24(2): 111-113. | |
17 | LiM, KaoH, WuZ, et al. Study on preparation and thermal property of binary fatty acid and the binary fatty acids/diatomite composite phase change materials[J]. Applied Energy, 2011, 88(5): 1606-1612. |
18 | ZuoJ, LiW, WengL. Thermal performance of caprylic acid/1-dodecanol eutectic mixture as phase change material (PCM) [J]. Energy & Buildings, 2011, 43(1): 207-210. |
19 | 郭勇, 朱阳倩, 伍乾, 等. 癸酸-肉豆蔻酸相变储热微胶囊的制备与表征[J]. 新型建筑材料, 2017, 44(10): 104-107. |
GuoY, ZhuY Q, WuQ, et al. Preparation and characterization of decanoic acid-myristic acid phase change thermal storage microcapsules[J]. Novel Building Materials, 2017, 44(10): 104-107. | |
20 | GuoJ, XiangH X, WangQ Q, et al. Preparation and properties of polyacrylonitrile fiber/binary of fatty acids composites as phase change materials[J]. Energy Sources, 2013, 35(11): 1064-1072. |
21 | 李玉洋, 章学来, 徐笑锋, 等. 正辛酸-肉豆蔻酸低温相变材料的制备和循环性能[J]. 化工进展, 2018, 37(2): 689-693. |
LiY Y, ZhangX L, XuX F, et al. Preparation and cycling performance of n-octanoic acid-myristic acid low temperature phase change material[J]. Chemical Industry and Engineering Progress, 2018, 37(2): 689-693. | |
22 | 黄艳, 章学来. 十二醇-癸酸-纳米粒子复合相变材料传热性能[J]. 化工学报, 2016, 67(6): 2271-2276. |
HuangY, ZhangX L. Heat transfer performance of dodecyl alcohol-capric acid-nanoparticle composite phase change material [J]. Acta Chimica Sinica, 2016, 67 (6): 2271-2276. | |
23 | 刘臣臻. 相变微胶囊储能过程传热与流动特性研究[D]. 北京: 中国矿业大学, 2017. |
LiuC Z. Study on heat transfer and flow characteristics of phase change microcapsule energy storage process[D]. Beijing: China University of Mining and Technology, 2017. | |
24 | 孙凯, 张步宁, 晏凤梅, 等. 石蜡微胶囊型相变储能材料制备及表征[J]. 化工进展, 2011, 30(12): 2676-2678. |
SunK, ZhangB N, YanF M, et al. Preparation and characterization of paraffin microcapsule phase change energy storage materials[J]. Chemical Industry and Engineering Progress, 2011, 30(12): 2676-2678. | |
25 | 赵长颖, 潘智豪, 王倩, 等. 多孔介质的相变和热化学储热性能[J]. 科学通报, 2016, 61(17): 1897-1915. |
ZhaoC Y, PanZ H, WangQ, et al. Phase transition and thermochemical heat storage properties of porous media[J]. Chinese Science Bulletin, 2016, 61(17): 1897-1915. | |
26 | 胡小冬, 高学农, 李得伦, 等. 石蜡/膨胀石墨定形相变材料的性能[J]. 化工学报, 2013, 64(10): 3831-3837. |
HuX D, GaoX N, LiD L, et al. Properties of paraffin/expanded graphite shaped phase change materials[J]. CIESC Journal, 2013, 64(10): 3831-3837. | |
27 | 李云涛, 晏华, 汪宏涛, 等. 正癸酸-月桂酸-硬脂酸三元低共熔体系/膨胀石墨复合相变材料的制备与表征[J].材料导报, 2017, 31(2): 94-99. |
LiY T, YanH, WangH T, et al. Preparation and characterization of ternary eutectic system/expanded graphite composite phase change materials with n-decanoic acid-lauric acid-stearic acid[J].Materials Review, 2017, 31(2): 94-99. | |
28 | YangY, PangY, LiuY, et al. Preparation and thermal properties of polyethylene glycol/expanded graphite as novel form-stable phase change material for indoor energy saving[J]. Materials Letters, 2018, 216(1): 200-223. |
29 | 翟天尧, 李廷贤, 仵斯, 等. 高导热膨胀石墨/硬脂酸定形相变储能复合材料的制备及储/放热特性[J]. 科学通报, 2018, 63(7): 674-683. |
ZhaiT Y, LiT X, WuS, et al. Preparation and storage/exothermic characteristics of high thermal conductivity expanded graphite/stear stearic phase change energy storage composites[J]. Science Bulletin, 2018, 63(7): 674-683. | |
30 | 张寅平, 苏跃红. (准)共晶系相变材料融点及融解热的理论预测[J]. 中国科学技术大学学报, 1995, 25(4): 474-478. |
ZhangY P, SuY H. Theoretical prediction of melting point and melting heat of eutectic phase change materials[J]. Journal of University of Science and Technology of China, 1995, 25(4): 474-478. | |
31 | 张玉辉, 刘海波, 赵丰东. 探讨用差示扫描量热法(DSC)测量相变材料相变温度和相变焓[J]. 中国建材科技, 2006, 15(4): 35-37. |
ZhangY H, LiuH B, ZhaoF D. Discussion on differential scanning calorimetry (DSC) to measure phase change temperature and phase change of phase change materials[J]. China Building Materials Science and Technology, 2006, 15(4): 35-37. |
[1] | 宋嘉豪, 王文. 斯特林发动机与高温热管耦合运行特性研究[J]. 化工学报, 2023, 74(S1): 287-294. |
[2] | 晁京伟, 许嘉兴, 李廷贤. 基于无管束蒸发换热强化策略的吸附热池的供热性能研究[J]. 化工学报, 2023, 74(S1): 302-310. |
[3] | 张双星, 刘舫辰, 张义飞, 杜文静. R-134a脉动热管相变蓄放热实验研究[J]. 化工学报, 2023, 74(S1): 165-171. |
[4] | 江河, 袁俊飞, 王林, 邢谷雨. 均流腔结构对微细通道内相变流动特性影响的实验研究[J]. 化工学报, 2023, 74(S1): 235-244. |
[5] | 吴延鹏, 刘乾隆, 田东民, 陈凤君. 相变材料与热管耦合的电子器件热管理研究进展[J]. 化工学报, 2023, 74(S1): 25-31. |
[6] | 杨学金, 杨金涛, 宁平, 王访, 宋晓双, 贾丽娟, 冯嘉予. 剧毒气体PH3的干法净化技术研究进展[J]. 化工学报, 2023, 74(9): 3742-3755. |
[7] | 刘远超, 关斌, 钟建斌, 徐一帆, 蒋旭浩, 李耑. 单层XSe2(X=Zr/Hf)的热电输运特性研究[J]. 化工学报, 2023, 74(9): 3968-3978. |
[8] | 孟令玎, 崇汝青, 孙菲雪, 孟子晖, 刘文芳. 改性聚乙烯膜和氧化硅固定化碳酸酐酶[J]. 化工学报, 2023, 74(8): 3472-3484. |
[9] | 高燕, 伍鹏, 尚超, 胡泽君, 陈晓东. 基于双流体喷嘴的磁性琼脂糖微球的制备及其蛋白吸附性能探究[J]. 化工学报, 2023, 74(8): 3457-3471. |
[10] | 盛冰纯, 于建国, 林森. 铝基锂吸附剂分离高钠型地下卤水锂资源过程研究[J]. 化工学报, 2023, 74(8): 3375-3385. |
[11] | 郑玉圆, 葛志伟, 韩翔宇, 王亮, 陈海生. 中高温钙基材料热化学储热的研究进展与展望[J]. 化工学报, 2023, 74(8): 3171-3192. |
[12] | 张瑞航, 曹潘, 杨锋, 李昆, 肖朋, 邓春, 刘蓓, 孙长宇, 陈光进. ZIF-8纳米流体天然气乙烷回收工艺的产品纯度关键影响因素分析[J]. 化工学报, 2023, 74(8): 3386-3393. |
[13] | 胡兴枝, 张皓焱, 庄境坤, 范雨晴, 张开银, 向军. 嵌有超小CeO2纳米粒子的碳纳米纤维的制备及其吸波性能[J]. 化工学报, 2023, 74(8): 3584-3596. |
[14] | 张贲, 王松柏, 魏子亚, 郝婷婷, 马学虎, 温荣福. 超亲水多孔金属结构驱动的毛细液膜冷凝及传热强化[J]. 化工学报, 2023, 74(7): 2824-2835. |
[15] | 张澳, 罗英武. 低模量、高弹性、高剥离强度丙烯酸酯压敏胶[J]. 化工学报, 2023, 74(7): 3079-3092. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||