化工学报 ›› 2019, Vol. 70 ›› Issue (1): 39-48.DOI: 10.11949/j.issn.0438-1157.20180697
收稿日期:
2018-06-26
修回日期:
2018-09-30
出版日期:
2019-01-05
发布日期:
2019-01-05
通讯作者:
王亦飞
作者简介:
胡晨辉(1993—),男,硕士研究生,<email>18855587097@163.com</email>|王亦飞(1970—),女,教授,<email>wangyf@ecust.edu.cn</email>
基金资助:
Chenhui HU(),Yifei WANG(
),Zebin BAO,Guangsuo YU
Received:
2018-06-26
Revised:
2018-09-30
Online:
2019-01-05
Published:
2019-01-05
Contact:
Yifei WANG
摘要:
以蒸发热水塔为研究对象进行可视化实验,借助高速摄像机以及图像处理软件研究热水塔内单孔筛孔塔板上方单个气泡的运动周期及运动特性,孔径为3 mm,在蒸汽中加入不凝性气体N2和N2/固体颗粒的混合物,研究固体颗粒对气泡生成、破碎与过程的影响。实验结果表明:气泡整个生长周期包括生成区、上升区、破碎区。气泡长径比在生成区由大变小,在上升区先增大后减小,在破碎区增大趋势明显;气泡的等效半径在整个运动周期中一直增大,其中在生成区的增大速度最快;生成区气泡的Y向运动速率呈现增大趋势,上升区以及破碎区气泡的上升速率平稳波动。当N2带入煤粉颗粒后,发现气泡的上升区时间比例大大降低,破碎区的占比增加明显,有利于塔内的热质传递。
中图分类号:
胡晨辉, 王亦飞, 包泽彬, 于广锁. 蒸发热水塔内固体颗粒对气泡运动的影响[J]. 化工学报, 2019, 70(1): 39-48.
Chenhui HU, Yifei WANG, Zebin BAO, Guangsuo YU. Effect of solid particles in evaporative hot water tower on bubble movement[J]. CIESC Journal, 2019, 70(1): 39-48.
Parameter | Value |
---|---|
tower height/mm | 2070 |
tower inner diameter/mm | 100 |
tower external diameter/mm | 110 |
number of tray | 1 |
表1 塔体参数
Table 1 Tower parameter
Parameter | Value |
---|---|
tower height/mm | 2070 |
tower inner diameter/mm | 100 |
tower external diameter/mm | 110 |
number of tray | 1 |
Number | Steam flow/(kg·h-1) | Nitrogen flow/(kg·h-1) | α |
---|---|---|---|
a | 3 | 0.15 | 20 |
b | 2 | 0.15 | 13.33 |
c | 3 | 0.3 | 10 |
d | 3 | 0.45 | 6.66 |
e | 2 | 0.45 | 4.44 |
表2 实验条件
Table 2 Experimental conditions
Number | Steam flow/(kg·h-1) | Nitrogen flow/(kg·h-1) | α |
---|---|---|---|
a | 3 | 0.15 | 20 |
b | 2 | 0.15 | 13.33 |
c | 3 | 0.3 | 10 |
d | 3 | 0.45 | 6.66 |
e | 2 | 0.45 | 4.44 |
1 | Bergman T L , Incropera F P , Lavine A S . Fundamentals of Heat and Mass Transfer[M]. 7th ed. New York: John Wiley & Sons Inc, 2011: 673-675. |
2 | 于广锁, 牛苗任, 王亦飞, 等 . 气流床煤气化的技术现状和发展趋势[J]. 现代化工, 2004, 24(5): 23-26. |
Yu G S , Niu M R , Wang Y F , et al . Application status and development tendency of coal entrained-bed gasification[J]. Modern Chemical Industry, 2004, 24(5): 23-26. | |
3 | 金建国, 任吉堂, 陈连生, 等 . 引入固体颗粒强化膜态沸腾换热的机理分析[J]. 工程热物理学报, 2006, 27(5): 820-822. |
Jing J G , Ren J T , Chen L S , et al . Mechanism analysis of enhanced boiling heat transfer by solid particles[J]. Journal of Engineering Thermophysics, 2006, 27(5): 820-822. | |
4 | 屈晓航, 田茂诚, 张冠敏, 等 . 含不凝气体蒸汽泡直接接触冷凝[J]. 化工学报, 2014, 65(12): 4749-4754. |
Qu X H , Tian M C , Zhang G M , et al . Direct contact condensation of steam bubbles with non-condensable gas[J]. CIESC Journal, 2014, 65(12): 4749-4754. | |
5 | Mochizuki T , Sato H , Mori Y H . Multi-angle observation scheme for bubbles and droplets[J]. Journal of Visualization, 2012, 15(2): 125-137. |
6 | Robin T T , Snyder N W . Theoretical analysis of bubble dynamics for an artificially produced vapor bubble in a turbulent stream[J]. International Journal of Heat and Mass Transfer, 1970, 13(3): 523-536. |
7 | 刘军云, 王辉涛, 王华, 等 . 直接接触换热器中分散相单个气泡的传热机理研究[J]. 昆明理工大学学报 (自然科学版), 2012, (2): 55-59. |
Liu J Y , Wang H T , Wang H , et al . Heat transfer mechanism of a single dispersed phase of bubbles in direct contact heat transfer[J]. Journal of Kunming University of Science and Technology (Natural Science Edition), 2012, (2): 55-59. | |
8 | Kamei S , Hirata M . Condensing phenomena of a single vapor bubble into subcooled water[J]. Experimental Heat Transfer, 1987, 3(2): 173-182. |
9 | Harada T , Nagakura H , Okawa T . Dependence of bubble behavior in subcooled boiling on surface wettability[J]. Nuclear Engineering and Design, 2010, 240(12): 3949-3955. |
10 | 马超, 薄涵亮 . 单气泡破裂产生膜液滴空间分布实验研究[J]. 原子能科学技术, 2015, 49(10): 1766-1771. |
Ma C , Bo H L . Experimental study on the spatial distribution of droplets produced by single bubble rupture[J]. Atomic Energy Science and Technology, 2015, 49(10): 1766-1771. | |
11 | Hsieh C C , Wang S B , Pan C . Dynamic visualization of two-phase flow patterns in a natural circulation loop[J]. International Journal of Multiphase Flow, 1997, 23(6): 1147-1169. |
12 | Morita K , Matsumoto T , Fukuda K , et al . Experimental verification of the fast reactor safety analysis code SIMMER-Ⅲ for transient bubble behavior with condensation[J]. Nuclear Engineering and Design, 2008, 238(1): 49-56. |
13 | Suzuki T , Tobita Y , Yamano H , et al . Development of multicomponent vaporization/condensation model for a reactor safety analysis code SIMMER-Ⅲ: extended verification using multi-bubble condensation experiment[J]. Nuclear Engineering and Design, 2003, 220(3): 240-254. |
14 | Deandres M C , Hoo E , Zangrando F . Performance of direct-contact heat and mass exchangers with steam-gas mixtures at subatmospheric pressures[J]. International Journal of Heat and Mass Transfer, 1996, 39(5): 965-973. |
15 | 李少白 . 非牛顿流体中气泡运动及传质的研究[D]. 天津: 天津大学, 2011. |
Li S B . Study on bubble motion and mass transfer in non-Newtonian fluids[D]. Tianjin: Tianjin University, 2011. | |
16 | Genid S B . Direct-contact condensation heat transfer on downcommerless trays for steam-water system[J]. International Journal of Heat and Mass Transfer, 2006, 49(7): 1225-1230. |
17 | Genid S B , Jadimovic B M , Vladic L A . Heat transfer rate of direct-contact condensation on baffle trays[J]. International Journal of Heat and Mass Transfer, 2008, 51(25/26): 5772-5776. |
18 | 袁惠新, 鲁娣, 等 . 气泡与颗粒在流场中的碰撞聚集和破碎[J]. 过滤与分离, 2008, 3(4): 12-15. |
Yuan H X , Lu D , et al . Collision and aggregation of air bubbles and particles in the flow field[J]. Journal of Filtration & Separation, 2008, 3(4): 12-15. | |
19 | Cheng P , Wang G , Quan X . Recent work on boiling and condensation in microchannels[J]. Journal of Heat Transfer, 2009, 131(4): 569-574. |
20 | Clerx N , van der Geld C W M . Experimental and analytical study of intermittency in direct contact condensation of steam in a cross-flow of water[C]//Proceedings of ECI International Conference on Boiling Heat Transfer. Florianopolis, Brazil. 2009: 1-8. |
21 | Gulawani S S , Joshi J B , Shah M S , et al . CFD analysis of flow pattern and heat transfer in direct contact steam condensation[J]. Chemical Engineering Science, 2006, 61(16): 5204-5220. |
22 | Pan L , Tan Z , Chen D , et al . Numerical investigation of vapor bubble condensation characteristics of subcooled flow boiling in vertical rectangular channel[J]. Nuclear Engineering and Design, 2012, 248(1): 126-136. |
23 | Sachin K , Dahikar S K , Sathe M J , et al . Investigation of flow and temperature patterns in direct contact condensation using PIV, PLIF and CFD[J]. Chemical Engineering Science, 2010, 65(16): 4606-4620. |
24 | Jiang B , Liu P , Zhang L , et al . Hydrodynamics and mass-transfer analysis of a distillation ripple tray by computational fluid dynamics simulation[J]. Industrial & Engineering Chemistry Research, 2013, 52(49): 17618-17626. |
25 | Tian W , Ishiwatari Y , Ikejiri S , et al . Numerical simulation on direct contact condensation of single bubble in subcooled water using MPS method[C]//International Symposium on Multiphase Flow Heat Mass Transfer and Energy Conversion,2010, 1207(1): 933-938. |
26 | Zeng Q , Cai J . Three-dimension simulation of bubble behavior under nonlinear oscillation[J]. Annals of Nuclear Energy, 2014, 63(1): 680-690. |
27 | Chen Y M , Mayinger F . Measurement of heat transfer at the phase interface of condensing bubbles[J]. International Journal of Multiphase Flow, 1992, 18(6): 877-890. |
28 | Warrier G R , Basu N , Dhir V K . Interfacial heat transfer during subcooled flow boiling[J]. International Journal of Heat and Mass Transfer, 2002, 45(19): 3947-3959. |
29 | Pan L , Tan Z , Chen D , et al . Numerical investigation of vapor bubble condensation characteristics of subcooled flow boiling in vertical rectangular channel[J]. Nuclear Engineering and Design, 2012, 248(1): 126-136. |
30 | 马亮 . 浮选过程中含钙矿物颗粒与气泡的相互作用研究[D]. 长沙: 中南大学, 2011. |
Ma L . Study on the interaction between calcium-containing mineral particles and bubbles during flotation[D]. Changsha: Central South University, 2011. |
[1] | 晁京伟, 许嘉兴, 李廷贤. 基于无管束蒸发换热强化策略的吸附热池的供热性能研究[J]. 化工学报, 2023, 74(S1): 302-310. |
[2] | 程成, 段钟弟, 孙浩然, 胡海涛, 薛鸿祥. 表面微结构对析晶沉积特性影响的格子Boltzmann模拟[J]. 化工学报, 2023, 74(S1): 74-86. |
[3] | 张双星, 刘舫辰, 张义飞, 杜文静. R-134a脉动热管相变蓄放热实验研究[J]. 化工学报, 2023, 74(S1): 165-171. |
[4] | 张义飞, 刘舫辰, 张双星, 杜文静. 超临界二氧化碳用印刷电路板式换热器性能分析[J]. 化工学报, 2023, 74(S1): 183-190. |
[5] | 陈爱强, 代艳奇, 刘悦, 刘斌, 吴翰铭. 基板温度对HFE7100液滴蒸发过程的影响研究[J]. 化工学报, 2023, 74(S1): 191-197. |
[6] | 刘明栖, 吴延鹏. 导光管直径和长度对传热影响的模拟分析[J]. 化工学报, 2023, 74(S1): 206-212. |
[7] | 王志国, 薛孟, 董芋双, 张田震, 秦晓凯, 韩强. 基于裂隙粗糙性表征方法的地热岩体热流耦合数值模拟与分析[J]. 化工学报, 2023, 74(S1): 223-234. |
[8] | 齐聪, 丁子, 余杰, 汤茂清, 梁林. 基于选择吸收纳米薄膜的太阳能温差发电特性研究[J]. 化工学报, 2023, 74(9): 3921-3930. |
[9] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[10] | 王玉兵, 李杰, 詹宏波, 朱光亚, 张大林. R134a在菱形离散肋微小通道内的流动沸腾换热实验研究[J]. 化工学报, 2023, 74(9): 3797-3806. |
[11] | 李科, 文键, 忻碧平. 耦合蒸气冷却屏的真空多层绝热结构对液氢储罐自增压过程的影响机制研究[J]. 化工学报, 2023, 74(9): 3786-3796. |
[12] | 陈天华, 刘兆轩, 韩群, 张程宾, 李文明. 喷雾冷却换热强化研究进展及影响因素[J]. 化工学报, 2023, 74(8): 3149-3170. |
[13] | 洪瑞, 袁宝强, 杜文静. 垂直上升管内超临界二氧化碳传热恶化机理分析[J]. 化工学报, 2023, 74(8): 3309-3319. |
[14] | 杨越, 张丹, 郑巨淦, 涂茂萍, 杨庆忠. NaCl水溶液喷射闪蒸-掺混蒸发的实验研究[J]. 化工学报, 2023, 74(8): 3279-3291. |
[15] | 王海, 林宏, 王晨, 许浩洁, 左磊, 王军锋. 高压静电场强化多孔介质表面沸腾传热特性研究[J]. 化工学报, 2023, 74(7): 2869-2879. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 170
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 435
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||