化工学报 ›› 2019, Vol. 70 ›› Issue (7): 2488-2495.DOI: 10.11949/j.issn.0438-1157.20181491
收稿日期:
2018-12-19
修回日期:
2019-04-08
出版日期:
2019-07-05
发布日期:
2019-07-05
通讯作者:
杨冬
作者简介:
梁梓宇(1993—),男,硕士研究生,<email>1950914370@qq.com</email>
基金资助:
Ziyu LIANG(),Li WAN,Juan LI,Xihong ZHOU,Dong YANG()
Received:
2018-12-19
Revised:
2019-04-08
Online:
2019-07-05
Published:
2019-07-05
Contact:
Dong YANG
摘要:
在压力26~30 MPa,时均质量流速420 kg·m-2·s-1、热通量0~130 kW·m-2工况范围内,对垂直上升并联双通道内超临界水的脉动传热特性进行了实验研究。根据实验数据分析了流量脉动对壁温的影响,脉动振幅率(Af)和脉动频率数(Wo)对时均Nusselt数的影响,并将脉动时均Nu与超临界传热关联式进行了比较。结果表明:壁温随流量脉动而波动,脉动周期相同,相位相反,流量脉动振幅越大,壁温波动也越大;低频脉动时均Nu随脉动振幅率的增大逐渐减小,随脉动频率数的增大先减小后基本不变;高频脉动时均Nu随脉动振幅率的增大而缓慢增大,随脉动频率数的增大而减小;关联式预测的Nu较实验值普遍偏高。
中图分类号:
梁梓宇, 万李, 李娟, 周熙宏, 杨冬. 并联双通道内超临界水的脉动传热特性[J]. 化工学报, 2019, 70(7): 2488-2495.
Ziyu LIANG, Li WAN, Juan LI, Xihong ZHOU, Dong YANG. Oscillatory heat transfer characteristics of supercritical water in parallel channels[J]. CIESC Journal, 2019, 70(7): 2488-2495.
1 | WangW S, LuoY S, ChenT K, et al. Experimental study of heat transfer characteristics under supercritical pressure of upwards inclined rifled tubes[J]. Power Engineering, 2005, 25(6): 790-793. |
2 | YangD, PanJ, ZhouC Q, et al. Experimental investigation on heat transfer and frictional characteristics of vertical upward rifled tube in supercritical CFB boiler [J]. Experimental Thermal and Fluid Science, 2011, 35(2): 291-300. |
3 | 潘杰, 杨冬, 朱探, 等. 超临界压力水在垂直上升内螺纹管中的传热特性[J]. 化工学报, 2011, 62(2): 307-314. |
PanJ, YangD, ZhuT, et al. Heat transfer characteristics of supercritical pressure water in vertical upward rifled tube[J]. CIESC Journal, 2011, 62(2): 307-314. | |
4 | LiuL, XiaoZ, YanX, et al. Heat transfer deterioration to supercritical water in circular tube and annular channel[J]. Nuclear Engineering and Design, 2013, 255: 97-104. |
5 | LiZ, WuY, TangG, et al. Comparison between heat transfer to supercritical water in a smooth tube and in an internally ribbed tube [J]. International Journal of Heat and Mass Transfer, 2015, 84: 529-541. |
6 | ZhangW Q, LiH X, ZhangQ, et al. Experimental investigation on heat transfer deterioration of supercritical pressure water in vertically-upward internally-ribbed tubes[J]. International Journal of Heat and Mass Transfer, 2018, 120: 930-943. |
7 | 沈植, 杨冬, 陈功名, 等. 高温高压水在垂直下降管内的传热特性[J]. 化工学报, 2013, 64(7): 2386-2393. |
ShenZ, YangD, ChenG M, et al. Heat transfer characteristics of high temperature and pressure water in vertical downward tube[J]. CIESC Journal, 2013, 64(7): 2386-2393. | |
8 | QuM F, YangD, LiangZ Y, et al. Experimental and numerical investigation on heat transfer of ultra-supercritical water in vertical upward tube under uniform and non-uniform heating[J]. International Journal of Heat and Mass Transfer, 2018, 127: 769-783. |
9 | 冯自平, 郭烈锦, 陈学俊. 卧式螺旋管压力降脉动瞬态及时均传热特性研究[J]. 核科学与工程, 1998, 18(1): 1-7. |
FengZ P, GuoL J, ChenX J. Transient and time-averaged heat transfer characteristics of pressure-drop oscillation in horizontal helically coiled tube[J]. Chinese Journal of Nuclear Science and Engineering, 1998, 18(1): 1-7. | |
10 | 冯自平, 郭烈锦.螺旋管内汽液两相流第二区压力降脉动瞬态及时均传热规律[J]. 化工学报, 2000, 51(3): 353-357. |
FengZ P, GuoL J. Transient and time-averaged oscillatory heat transfer of two-phase flow during second regional pressure-drop oscillation in helical coiled tube[J]. Journal of Chemical Industry and Engineering (China), 2000, 51(3): 353-357. | |
11 | 郭烈锦, 冯自平. 螺旋管内汽液两相流热力型脉动瞬态及时均传热[J]. 西安交通大学学报, 1999, 33(9): 39-42. |
GuoL J, FengZ P. Transient and time-averaged heat transfer of steam water two-phase oscillatory flow in helical coiled tubing boiler-reactor[J]. Journal of Xi'an Jiaotong University, 1999, 33(9): 39-42. | |
12 | 冯自平, 郭烈锦. 螺旋管内汽液两相流密度波型脉动流动传热试验研究[J]. 核科学与工程, 1999, 19(4): 296-302. |
FengZ P, GuoL J. An experimental investigation of oscillatory heat transfer in helical coiled tube with steam water two-phase density wave oscillation flow[J]. Chinese Journal of Nuclear Science and Engineering, 1999, 19(4): 296-302. | |
13 | ChenC A, ChangW R, LinT F. Time periodic flow boiling heat transfer of R-134a and associated bubble characteristics in a narrow annular duct due to flow rate oscillation[J]. International Journal of Heat and Mass Transfer, 2010, 53: 3593-3606. |
14 | WangS L, ChenC A, LinT F. Oscillatory subcooled flow boiling heat transfer of R-134a and associated bubble characteristics in a narrow annular duct due to flow rate oscillation[J]. International Journal of Heat and Mass Transfer, 2013, 63: 255-267. |
15 | ChenC A, LinT F, YanW M, et al. Time periodic evaporation heat transfer of R-134a in a narrow annular duct due to mass flow rate oscillation [J]. International Journal of Heat and Mass Transfer, 2018, 118: 154-164. |
16 | MikkelS, DoraoC A. Experimental study of the heat transfer coefficient deterioration during density wave oscillations[J]. Chemical Engineering Science, 2015, 132: 178-185. |
17 | 郭烈锦, 冯自平. 螺旋管内单相液体紊流脉动流动传热[J]. 化工学报, 2000, 51(2): 159-164. |
GuoL J, FengZ P. Oscillation heat transfer in helically coiled tube with fully developed turbulent oscillation flow[J]. Journal of Chemical Industry and Engineering (China), 2000, 51(2): 159-164. | |
18 | 李思文, 李华, 杨臧健, 等. 光管内湍流脉动传热影响因素的实验研究[J]. 浙江工业大学学报, 2013, 41(4): 395-399. |
LiS W, LiH, YangZ J, et al. Experimental study on influencing factors of pulsating heat transfer in turbulent flow in a pipe[J]. Journal of Zhejiang University of Technology, 2013, 41(4): 395-399. | |
19 | 杨卫卫, 何雅玲, 陶文铨, 等. 凹槽通道中脉动流动强化传质的数值研究[J]. 西安交通大学学报, 2004, 38(11): 1119-1122. |
YangW W, HeY L, TaoW Q, et al. Numerical study on enhancing mass transfer in grooved channel by pulsating flow[J]. Journal of Xi'an Jiaotong University, 2004, 38(11): 1119-1122. | |
20 | 胡玉生. 流体脉动强化对流换热的数值模拟[D]. 重庆: 重庆大学, 2005. |
HuY S. Numerical simulation of heat transfer enhancement with pulsating flow[D]. Chongqing : Chongqing University, 2005. | |
21 | JinD X, LeeY P, LeeD Y. Effects of the pulsating flow agitation on the heat transfer in a triangular grooved channel [J]. International Journal of Heat and Mass Transfer, 2007, 50(15): 3062-3071. |
22 | ElshafeiE A M, SafwatM M, MansourH, et al. Experimental study of heat transfer in pulsating turbulent flow in a pipe[J]. International Journal of Heat and Fluid Flow, 2008, 29(4): 1029-1038. |
23 | TerhaarS, VelazquezA, AriasJ R, et al. Experimental study on the unsteady laminar heat transfer downstream of a backwards facing step [J]. International Communications in Heat and Mass Transfer, 2010, 37(5): 457-462. |
24 | YuJ C, LiZ X, ZhaoT S. An analytical study of pulsating laminar heat convection in a circular tube with constant heat flux [J]. International Journal of Heat and Mass Transfer, 2004, 47(24): 5297-5301. |
25 | WangX, ZhangN. Numerical analysis of heat transfer in pulsating turbulent flow in a pipe [J]. International Journal of Heat & Mass Transfer, 2005, 48(19): 3957-3970. |
26 | MiropolskiiL, ShitsmanM. Heat transfer to water and steam at variable specific heat(in near critical region)[J]. Soviet, Physcis-Technical Physics, 1957, 2: 2196-2208. |
27 | BishopA, SandbergR, TongL. Forced convention heat transfer to water at near-critical temperature and super-critical pressures[R]. Report WCAP 2056. Pittsburgh: Westinghouse Electic Corporation, 1964. |
28 | SwensonH, CarverJ, KakaralaC. Heat transfer to supercritical water in smooth-bore tubes[J]. Journal of Heat Transfer, 1965, 87(4): 477-4833. |
29 | JacksonJ. Consideration of the heat transfer properties of supercritical water in connection with the advanced nuclear reactors[C]//13th Pacific Basin Nuclear Conference. Shenzhen, 2002. |
30 | MokryS, PioroI, FarahA, et al. Development of supercritical water heat-transfer correlation for vertical bare tubes[J]. Nuclear Engineering and Design, 2011, 241(4): 1126-1136. |
[1] | 张双星, 刘舫辰, 张义飞, 杜文静. R-134a脉动热管相变蓄放热实验研究[J]. 化工学报, 2023, 74(S1): 165-171. |
[2] | 张义飞, 刘舫辰, 张双星, 杜文静. 超临界二氧化碳用印刷电路板式换热器性能分析[J]. 化工学报, 2023, 74(S1): 183-190. |
[3] | 陈爱强, 代艳奇, 刘悦, 刘斌, 吴翰铭. 基板温度对HFE7100液滴蒸发过程的影响研究[J]. 化工学报, 2023, 74(S1): 191-197. |
[4] | 刘明栖, 吴延鹏. 导光管直径和长度对传热影响的模拟分析[J]. 化工学报, 2023, 74(S1): 206-212. |
[5] | 王志国, 薛孟, 董芋双, 张田震, 秦晓凯, 韩强. 基于裂隙粗糙性表征方法的地热岩体热流耦合数值模拟与分析[J]. 化工学报, 2023, 74(S1): 223-234. |
[6] | 晁京伟, 许嘉兴, 李廷贤. 基于无管束蒸发换热强化策略的吸附热池的供热性能研究[J]. 化工学报, 2023, 74(S1): 302-310. |
[7] | 程成, 段钟弟, 孙浩然, 胡海涛, 薛鸿祥. 表面微结构对析晶沉积特性影响的格子Boltzmann模拟[J]. 化工学报, 2023, 74(S1): 74-86. |
[8] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[9] | 王玉兵, 李杰, 詹宏波, 朱光亚, 张大林. R134a在菱形离散肋微小通道内的流动沸腾换热实验研究[J]. 化工学报, 2023, 74(9): 3797-3806. |
[10] | 陈哲文, 魏俊杰, 张玉明. 超临界水煤气化耦合SOFC发电系统集成及其能量转化机制[J]. 化工学报, 2023, 74(9): 3888-3902. |
[11] | 齐聪, 丁子, 余杰, 汤茂清, 梁林. 基于选择吸收纳米薄膜的太阳能温差发电特性研究[J]. 化工学报, 2023, 74(9): 3921-3930. |
[12] | 李科, 文键, 忻碧平. 耦合蒸气冷却屏的真空多层绝热结构对液氢储罐自增压过程的影响机制研究[J]. 化工学报, 2023, 74(9): 3786-3796. |
[13] | 陈天华, 刘兆轩, 韩群, 张程宾, 李文明. 喷雾冷却换热强化研究进展及影响因素[J]. 化工学报, 2023, 74(8): 3149-3170. |
[14] | 杨越, 张丹, 郑巨淦, 涂茂萍, 杨庆忠. NaCl水溶液喷射闪蒸-掺混蒸发的实验研究[J]. 化工学报, 2023, 74(8): 3279-3291. |
[15] | 洪瑞, 袁宝强, 杜文静. 垂直上升管内超临界二氧化碳传热恶化机理分析[J]. 化工学报, 2023, 74(8): 3309-3319. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||