1 |
斯俊平 . 燃煤过程中钠对焦特性及细颗粒物控制的影响[D]. 武汉: 华中科技大学, 2014.
|
|
Si J P . Effects of sodium on char characteristics and fine particulate matters control during coal combustion[D]. Wuhan: Huazhong University of Science and Technology, 2014.
|
2 |
黄忠友 . 试析生物质发电发展现状及前景[J]. 科技风, 2019, (2): 185.
|
|
Huang Z Y . Analysis of current situation and prospect of biomass power generation[J]. Technology Wind, 2019, (2): 185.
|
3 |
徐林林 . 高岭土对高钠煤燃烧过程中碱金属的脱除效果研究[D]. 天津: 天津大学, 2015.
|
|
Xu L L . Effect of kaolin on removal of alkali metals during combustion of high sodium coal[D]. Tianjin: Tianjin University, 2015.
|
4 |
Mcnallan M J , Yurek G J , Elliott J F . The formation of inorganic particulates by homogeneous nucleation in gases produced by the combustion of coal[J]. Combustion & Flame, 1981, 42(81): 45-60.
|
5 |
兰泽全, 曹欣玉, 周俊虎, 等 . 锅炉受热面沾污结渣的危害及其防治措施[J]. 电站系统工程, 2003, 19(1): 31-33.
|
|
Lan Z Q , Cao X Y , Zhou J H , et al . Hazards and prevention measures of fouling and slagging on heating surfaces of boilers[J]. Power Plant System Engineering, 2003, 19(1): 31-33.
|
6 |
董雪玲 . 大气可吸入颗粒物对环境和人体健康的危害[J]. 资源·产业, 2004, (5): 52-55.
|
|
Dong X L . Hazards of inhalable particulates to environment and human health[J]. Resources·Industry, 2004, (5): 52-55.
|
7 |
Zhan Z , Fry A R , Wendt J O L . Relationship between submicron ash aerosol characteristics and ash deposit compositions and formation rates during air- and oxy-coal combustion[J]. Fuel, 2016, 181: 1214-1223.
|
8 |
Waindich A , Müller M . Alkali removal at 1400℃ under gasification conditions[J]. Fuel, 2014, 116: 889-893.
|
9 |
Gibbs A R , Pooley F D . Analysis and interpretation of inorganic mineral particles in "lung" tissues[J]. Thorax, 1996, 51(3): 327-334.
|
10 |
周科 . 燃煤细微颗粒物生成特性与炉内控制的研究[D]. 武汉: 华中科技大学, 2011.
|
|
Zhou K . Study on the generation characteristics and control of fine particles in coal combustion[D]. Wuhan: Huazhong University of Science and Technology, 2011.
|
11 |
温昶, 徐明厚, 于敦喜, 等 . 煤粉O2/CO2燃烧时PM2. 5及其Fe、S的生成特性[J]. 化工学报, 2011, 62(4): 1062-1069.
|
|
Wen C , Xu M H , Yu D X , et al . Formation characteristics of PM2. 5 including Fe, S during O2/CO2 combustion of pulverized coal[J]. CIESC Journal, 2011, 62(4): 1062-1069.
|
12 |
Quann R J , Sarofim A F . Vaporization of refractory oxides during pulverized coal combustion[J]. Symposium on Combustion, 1982, 19(1): 1429-1440.
|
13 |
Si J P , Liu X W , Xu M H , et al . Effect of kaolin additive on PM2. 5, reduction during pulverized coal combustion: importance of sodium and its occurrence in coal[J]. Applied Energy, 2014, 114(2): 434-444.
|
14 |
Yan L , Gupta R P , Wall T F . The implication of mineral coalescence behaviour on ash formation and ash deposition during pulverised coal combustion[J]. Fuel, 2001, 80(9): 1333-1340.
|
15 |
徐明厚, 于敦喜, 刘小伟 . 燃煤可吸入颗粒物的形成与排放[M]. 北京: 科学出版社, 2009.
|
|
Xu M H , Yu D X , Liu X W . Formation and Emission of Inhalable Particles from Coal Combustion[M]. Beijing: Science Press, 2009.
|
16 |
刘建忠, 张光学, 周俊虎, 等 . 燃煤细灰的形成及微观形态特征[J]. 化工学报, 2006, 57(12): 2976-2980.
|
|
Liu J Z , Zhang G X , Zhou J H , et al . Formation and micromorphology characteristics of fine particles generated during coal combustion [J]. Journal of Chemical Industry and Engineering(China), 2006, 57(12): 2976-2980.
|
17 |
刘勇, 赵汶, 刘瑞, 等 . 化学团聚促进电除尘脱除PM2. 5的实验研究[J]. 化工学报, 2014, 65(9): 3609-3616.
|
|
Liu Y , Zhao W , Liu R , et al . Improving removal of PM2.5 by electrostatic precipitator with chemical agglomeration[J]. CIESC Journal, 2014, 65(9): 3609-3616.
|
18 |
Quann R J . Ash vaporization under simulated pulverized coal combustion conditions[D]. Massachusetts: Massachusetts Institute of Technology, 1982.
|
19 |
Li Y , Raj G A , Wall T . Fragmentation behavior of pyrite and calcite during high-temperature processing and mathematical simulation[J]. Energy & Fuels, 2001, 15(2): 389-394.
|
20 |
Quann R J , Neville M , Janghorbani M , et al . Mineral matter and trace-element vaporization in a laboratory-pulverized coal combustion system[J]. Environmental Science & Technology, 1982, 16(11): 776.
|
21 |
Helble J J . Mechanisms of ash particle formation and growth during pulverized coal combustion[D]. Massachusetts: MIT Library in America, 1987.
|
22 |
孙伟, 刘小伟, 徐义书, 等 . 两种改性高岭土减排超细颗粒物的对比分析[J]. 化工学报, 2016, 67(4): 1179-1185.
|
|
Xun W , Liu X W , Xu Y S , et al . Contrastive analysis of reducing ultrafine particulate matters emission by two modified kaolin[J]. CIESC Journal, 2016, 67(4): 1179-1185.
|
23 |
Mwabe P O , Wendt J O L . Mechanisms governing trace sodium capture by kaolinite in a downflow combustor[J]. Symposium on Combustion, 1996, 26(2): 2447-2453.
|
24 |
Wang G L , Jensen P A , Wu H , et al . Potassium capture by kaolin (1): KOH[J]. Energy & Fuels, 2018, 32(2): 1851-1862.
|
25 |
Schürmann H , Unterberger S , Hein K R , et al . The influence of fuel additives on the behaviour of gaseous alkali-metal compounds during pulverised coal combustion[J]. Faraday Discussions, 2001, 119(119): 433-444.
|
26 |
Gale T , Wendt J L . Mechanisms and models describing sodium and lead scavenging by a kaolinite aerosol at high temperatures[J]. Aerosol Science & Technology, 2003, 37(11): 865-876.
|
27 |
Wang G L , Jensen P A , Wu H , et al . Potassium capture by kaolin (2): K2CO3, KCl, and K2SO4 [J]. Energy & Fuels, 2018, 32(3): 3566-3578.
|
28 |
Damoe A J , Wu H , Frandsen F J , et al . Impact of coal fly ash addition on combustion aerosols (PM2. 5) from full-scale suspension-firing of pulverized wood[J]. Energy & Fuels, 2014, 28(5): 3217-3223.
|
29 |
Scandrett L A , Clift R . The thermodynamics of alkali removal from coal derived gases[J]. Journal of the Institute of Energy, 1984, 57 (433): 391-397.
|
30 |
Li Y , Li J , Jin Y , et al . Study on alkali-metal vapor removal for high-temperature cleaning of coal gas[J]. Energy & Fuels, 2005, 19(4): 1606-1610.
|
31 |
Wang G L . Potassium capture by kaolin and coal fly ash[D]. Kongens Lyngby: Technical University of Denmark, 2018.
|