化工学报 ›› 2019, Vol. 70 ›› Issue (S1): 69-78.DOI: 10.11949/j.issn.0438-1157.20190033
收稿日期:
2019-01-09
修回日期:
2019-01-18
出版日期:
2019-03-31
发布日期:
2019-03-31
通讯作者:
谭宏博
作者简介:
<named-content content-type="corresp-name">单思宇</named-content>(1995—),女,硕士研究生,<email>shansy@stu.xjtu.edu.cn</email>|谭宏博(1982—),男,博士,副教授,<email>hongbotan@xjtu.edu.cn</email>
基金资助:
Received:
2019-01-09
Revised:
2019-01-18
Online:
2019-03-31
Published:
2019-03-31
Contact:
Hongbo TAN
摘要:
强化蒸发式冷凝器管外传热传质可有效降低系统能耗,利用Fluent软件,结合自编译程序及组分输运模型对扁管蒸发式冷凝器管外传热传质过程建模,选取了等周长圆管模型进行比较,研究了二者传热传质性能的差异。通过研究管外液膜厚度及速度,以及管外温度分布和含湿量的变化规律,对比了扁管和圆管的平均表面传热系数,结果表明扁管的平均表面传热系数于圆管提升了9.04%。模拟了风速从1.5 m·s-1变化至3 m·s-1以及喷淋密度从0.15 kg·m-1·s-1增加至0.3 kg·m-1·s-1时对扁管式蒸发式冷凝器换热的影响,得到随着风速及喷淋密度的增加其平均表面传热系数分别增加了5.68%和30.26%。对扁管式蒸发式冷凝器管外的传热传质特性的研究为其应用提供了理论指导。
中图分类号:
单思宇, 谭宏博. 基于扁管的蒸发式冷凝器管外传热传质特性研究[J]. 化工学报, 2019, 70(S1): 69-78.
Siyu SHAN, Hongbo TAN. Study on heat and mass transfer characteristics outside flat tube for evaporative condensers[J]. CIESC Journal, 2019, 70(S1): 69-78.
设置参数 | 数值 |
---|---|
喷淋水入口喷淋密度/(kg·m-1·s-1) | 0.15~0.30 |
喷淋水入口温度/K | 303.15 |
壁面温度/K | 308.15 |
空气入口流速/(m·s-1) | 3 |
空气入口温度/K | 298.15 |
空气入口含湿量/(kg·(kg干空气)-1) | 0.015 |
喷淋高度/ mm | 5 |
喷淋水入口宽度 /mm | 1 |
表1 模拟的基本工况
Table 1 Basic operating conditions for simulation
设置参数 | 数值 |
---|---|
喷淋水入口喷淋密度/(kg·m-1·s-1) | 0.15~0.30 |
喷淋水入口温度/K | 303.15 |
壁面温度/K | 308.15 |
空气入口流速/(m·s-1) | 3 |
空气入口温度/K | 298.15 |
空气入口含湿量/(kg·(kg干空气)-1) | 0.015 |
喷淋高度/ mm | 5 |
喷淋水入口宽度 /mm | 1 |
图8 圆管与扁管不同周向无量纲位置的液膜厚度比较
Fig.8 Comparison of liquid film thickness between circular and flat tubes at different circumferential dimensionless positions
图9 圆管与扁管不同周向无量纲位置的局部传热系数比较
Fig.9 Comparison of local heat transfer coefficients of circular and flat tubes at different circumferential dimensionless positions
图19 不同喷淋密度下周向90°位置处含湿量沿水平方向变化曲线
Fig.19 Variation curves of moisture content along horizontal direction at 90° circumferential position under different spray densities
1 | 尹正, 张文玲 . 我国冷却设备行业发展现状及展望[J]. 制冷技术, 2015, 8: 86-88. |
Yin Z , Zhang W L . Development status and outlook for China cooling equipment industry in 2014[J]. Refrigeration Technology, 2015, 8: 86-88. | |
2 | 朱东生, 孙荷静, 蒋翔 . 蒸发式冷凝器的研究现状及其应用[J]. 流体机械, 2008, 36(8): 28-34. |
Zhu D S , Sun H J , Jiang X . Research progress and application of evaporative condenser[J]. Fluid Machinery, 2008, 36(8): 28-34. | |
3 | Fiorentino M , Starace G . Numerical investigations on two-phase flow modes in evaporative condensers[J]. Applied Thermal Engineering, 2016, 94: 777-785. |
4 | Dreyer A A , Erens P J . Heat and mass transfer coefficient and pressure drop correlations for a crossflow evaporative cooler[C]//Proceeding of the International Heat Transfer Conference. Jerusalem, 1990. |
5 | Mizushina T , Ito R , Miyashita H . Experimental study of an evaporative cooler[J]. International Chemical Engineering, 1967, 7(4): 727-732. |
6 | Jahangeer K A , Tay A A O , Islam M R . Numerical investigation of transfer coefficients of an evaporatively-cooled condenser[J]. Applied Thermal Engineering, 2011: 1655-1663. |
7 | Islam M R , Jahangeer K A , Chua K J . Experimental and numerical study of an evaporatively-cooled condenser of air-conditioning systems[J]. Energy, 2015, (87): 390-399. |
8 | Acunha J I C , Schneider P S . Numerical simulation of air-water flows in an evaporative condenser[J]. Thermal Engineering, 2009, 8(1): 24-30. |
9 | 朱冬生, 张景卫, 吴治将, 等 . 板式蒸发式冷凝器两相降膜流动CFD模拟及传热研究[J]. 华南理工大学学报(自然科学版), 2008, 36(7): 6-10. |
Zhu D S , Zhang J W , Wu Z J , et al . CFD simulation and investigation into heat transfer for falling film with two-phase flow in plate-type evaporative condenser[J]. Journal of South China University of Technology (Natural Science Edition), 2008, 36(7): 6-10. | |
10 | 王定标, 万方方, 周俊杰 . 蒸发式冷凝器异型扁管性能分析及数值模拟[J]. 郑州大学学报 (工学版), 2010, 31(2): 64-67. |
Wang D B , Wan F F , Zhou J J . Performance analysis and numerical simulation of evaporative condenser with special-shaped flat tube[J]. Journal of Zhengzhou University(Engineering Science), 2010, 31(2): 64-67. | |
11 | Tsay Y L , Lin T F . Evaporation of a heated falling liquid film into a laminar gas stream[J]. Experimental Thermal and Fluid Science, 1995, 11(7): 61-71. |
12 | 罗林聪 . 水平异形管降膜蒸发流动与传热强化机理及实验研究[D]. 济南: 山东大学, 2014. |
Luo L C . Analysis of flow and heat transfer enhancement and experimental research on falling film evaporation on horizontal shaped tubes[D]. Jinan: Shandong University, 2014. | |
13 | Fiorentino M , Starace G . A numerical model to investigate evaporative condensers behaviour at tube scale[C]// ASME 2014-12th Biennial Conference on Engineering Systems and Analysis. American Society of Mechanical Engineering, 2014. |
14 | 程嫚 . 水平管外水风传热传质数值模拟[D]. 武汉: 华中科技大学, 2014. |
Cheng M . Numerical simulation of heat and mass transfer of water and air outside the horizontal tube[D]. Wuhan: Huazhong University of Science and Technology, 2014. | |
15 | Parker R O , Treybal R E . The heat mass transfer characteristics of evaporative coolers [J]. AIChE Chemical Engineering Progress Symposium Series, 1962, 57(32): 138-149. |
[1] | 晁京伟, 许嘉兴, 李廷贤. 基于无管束蒸发换热强化策略的吸附热池的供热性能研究[J]. 化工学报, 2023, 74(S1): 302-310. |
[2] | 程成, 段钟弟, 孙浩然, 胡海涛, 薛鸿祥. 表面微结构对析晶沉积特性影响的格子Boltzmann模拟[J]. 化工学报, 2023, 74(S1): 74-86. |
[3] | 张化福, 童莉葛, 张振涛, 杨俊玲, 王立, 张俊浩. 机械蒸汽压缩蒸发技术研究现状与发展趋势[J]. 化工学报, 2023, 74(S1): 8-24. |
[4] | 吴馨, 龚建英, 靳龙, 王宇涛, 黄睿宁. 超声波激励下铝板表面液滴群输运特性的研究[J]. 化工学报, 2023, 74(S1): 104-112. |
[5] | 叶展羽, 山訸, 徐震原. 用于太阳能蒸发的折纸式蒸发器性能仿真[J]. 化工学报, 2023, 74(S1): 132-140. |
[6] | 张双星, 刘舫辰, 张义飞, 杜文静. R-134a脉动热管相变蓄放热实验研究[J]. 化工学报, 2023, 74(S1): 165-171. |
[7] | 毕丽森, 刘斌, 胡恒祥, 曾涛, 李卓睿, 宋健飞, 吴翰铭. 粗糙界面上纳米液滴蒸发模式的分子动力学研究[J]. 化工学报, 2023, 74(S1): 172-178. |
[8] | 张义飞, 刘舫辰, 张双星, 杜文静. 超临界二氧化碳用印刷电路板式换热器性能分析[J]. 化工学报, 2023, 74(S1): 183-190. |
[9] | 陈爱强, 代艳奇, 刘悦, 刘斌, 吴翰铭. 基板温度对HFE7100液滴蒸发过程的影响研究[J]. 化工学报, 2023, 74(S1): 191-197. |
[10] | 刘明栖, 吴延鹏. 导光管直径和长度对传热影响的模拟分析[J]. 化工学报, 2023, 74(S1): 206-212. |
[11] | 王志国, 薛孟, 董芋双, 张田震, 秦晓凯, 韩强. 基于裂隙粗糙性表征方法的地热岩体热流耦合数值模拟与分析[J]. 化工学报, 2023, 74(S1): 223-234. |
[12] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[13] | 王玉兵, 李杰, 詹宏波, 朱光亚, 张大林. R134a在菱形离散肋微小通道内的流动沸腾换热实验研究[J]. 化工学报, 2023, 74(9): 3797-3806. |
[14] | 李科, 文键, 忻碧平. 耦合蒸气冷却屏的真空多层绝热结构对液氢储罐自增压过程的影响机制研究[J]. 化工学报, 2023, 74(9): 3786-3796. |
[15] | 齐聪, 丁子, 余杰, 汤茂清, 梁林. 基于选择吸收纳米薄膜的太阳能温差发电特性研究[J]. 化工学报, 2023, 74(9): 3921-3930. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||