化工学报 ›› 2019, Vol. 70 ›› Issue (6): 2325-2333.DOI: 10.11949/j.issn.0438-1157.20190063
收稿日期:
2019-01-21
修回日期:
2019-03-01
出版日期:
2019-06-05
发布日期:
2019-06-05
通讯作者:
彭波
作者简介:
<named-content content-type="corresp-name">郭月莹</named-content>(1993—),女,硕士研究生,<email>624022987@qq.com</email>
基金资助:
Yueying GUO(),Jianliang XIE,Bo PENG(
)
Received:
2019-01-21
Revised:
2019-03-01
Online:
2019-06-05
Published:
2019-06-05
Contact:
Bo PENG
摘要:
设计一种同时满足可见光波段高吸收和远红外波段高反射的特殊结构是制备红外低发射涂层的重要挑战。利用溅射镀膜法和化学合成法制备得到不同尺寸的金纳米颗粒(AuNPs),完成了AuNPs/SiO2/Al薄膜结构设计,并结合高级数值仿真软件对其结构进行理论分析,使用可见分光光度计和傅里叶红外光谱仪测试了其可见光和远红外波段反射谱,研究了等离激元模式在纳米复合结构薄膜中的应用。结果表明,金属纳米颗粒尺寸和介质层厚度对该薄膜的反射性能都有十分重要的影响,通过制备纳米复合材料,可见光波段吸收率达到64.07%,远红外波段反射率下降不超过2.29%。
中图分类号:
郭月莹, 谢建良, 彭波. 可见高吸收红外高反射薄膜制备及光学特性研究[J]. 化工学报, 2019, 70(6): 2325-2333.
Yueying GUO, Jianliang XIE, Bo PENG. Preparation and optical property study of plasmonic films with low infrared emissivity and low lightness[J]. CIESC Journal, 2019, 70(6): 2325-2333.
图1 AuNPs在溶液中的吸收光谱(黑、红色曲线分别代表直径为13 nm、45 nm的AuNPs吸收光谱)
Fig.1 Absorption spectrum of AuNPs in solution(black and red lines are absorption spectra of AuNPs of which diameters are 13 nm and 45 nm respectively)
1 | 陈宇, 景江, 韩航, 等. 一种氯氧化铋近红外高反射隔热颜料颗粒及制备方法: 107215894A[P]. 2017. |
ChenY, JingJ, HanH, et al. Preparation of bismuth chloride oxide pigment particles with near-infrared high reflectance: 107215894A[P]. 2017. | |
2 | 程明, 吉静. 近红外区具有高反射率的建筑节能涂料的研究进展[J]. 化工进展, 2008, 27(1): 12-15. |
ChengM, JiJ. Development of near-infrared highly reflective coatings on roof surface[J]. Chemical Industry and Engineering Progress, 2008, 27(1): 12-15. | |
3 | WangK, WangC, YinY, et al. Modification of Al pigment with graphene for infrared/visual stealth compatible fabric coating[J]. Journal of Alloys & Compounds, 2017, 690: 741-748. |
4 | 张潇予, 张玉军, 龚红宇, 等. 溶胶-凝胶法制备纳米近红外高反射率黑色陶瓷颜料[J]. 功能材料, 2013, 44(3):417−420. |
ZhangX Y, ZhangY J, GongH Y, et al. Preparation of nano-near-infrared high reflectance black ceramic pigments by sol-gel method[J]. Journal of Function Materials, 2013, 44(3): 417−420. | |
5 | 刘兵, 潘士兵, 于名汛, 等. 红外隐身涂料的研究及进展[J]. 兵器材料科学与工程, 2017, (3): 137-142. |
LiuB, PanS B, YuM X, et al. Research and development of infrared stealth coatings[J]. Ordnance Material Science and Engineering, 2017, (3): 137-142. | |
6 | 徐飞凤, 徐国跃, 谭淑娟, 等. 8~14 μm波段低红外发射率与低光泽度兼容涂层的制备方法初探[J]. 兵器材料科学与工程, 2011, (4): 5-9. |
XuF F, XuG Y, TanS J, et al. Preparation methods of low infrared emissivity and low glossiness coatings for 8—14 µm wave band[J]. Ordnance Material Science and Engineering, 2011, (4): 5-9. | |
7 | 李叶. 红外/可见光复合隐身橡胶涂层材料的制备与研究[D]. 太原: 中北大学, 2016. |
LiY. Preparation and research of infrared / visible composite stealth rubber coating material[D]. Taiyuan: North University of China, 2016. | |
8 | HeL, ZhaoY, XingL, et al. Low infrared emissivity coating based on graphene surface-modified flaky aluminum[J]. Materials, 2018, 11(9): 1502. |
9 | LiangJ, LiW, XuG Y, et al. Preparation and characterization of the colored coating with low infrared emissivity based on nanometer pigment[J]. Progress in Organic Coatings, 2018, 115: 74-78. |
10 | YuanL , WengX L, XieJ L, et al. Solvothermal synthesis and visible/infrared optical properties of Al/Fe3O4 core–shell magnetic composite pigments[J]. Journal of Alloys & Compounds, 2013, 580(32): 108-113. |
11 | YuanL, WengX L, HuL U, et al. Preparation and infrared reflection performance of Al/Cr2O3 composite particles[J]. Journal of Inorganic Materials, 2013, 28(5): 545-550. |
12 | LiuY F, XieJ L, LuoM, et al. The synthesis and characterization of Al/Co3O4, magnetic composite pigments with low infrared emissivity and low lightness[J]. Infrared Physics & Technology, 2017, 83: 88-93. |
13 | LiuY F, XieJ L, LuoM, et al. The synthesis and optical properties of Al/MnO2 composite pigments by ball-milling for low infrared emissivity and low lightness[J]. Progress in Organic Coatings, 2017, 108: 30-35. |
14 | LiuY F, XieJ L, LuoM, et al. Preparation and angle-dependent optical properties of brown Al/MnO2 composite pigments in visible and infrared region[J]. Nanoscale Research Letters, 2017, 12(1): 266. |
15 | 王振林. 表面等离激元研究新进展[J]. 物理学进展, 2009, 29(3): 287-324. |
WangZ L. New progress in surface plasmon research[J]. Progress in Physics, 2009, 29(3): 287-324. | |
16 | SekhonJ S, VermaS S. Optimal dimensions of gold nanorod for plasmonic nanosensors[J]. Plasmonics, 2011, 6(1): 163-169. |
17 | NikolajsenT, LeossonK, BozhevolnyiS I. Surface plasmon polariton based modulators and switches operating at telecom wavelengths[J]. Applied Physics Letters, 2004, 85(24): 5833. |
18 | 童廉明, 徐红星. 表面等离激元——机理、应用与展望[J]. 物理, 2012, 41(9): 582-588. |
TongL M, XuH X. Surface plasmons—mechanisms, applications and perspectives[J]. Physics, 2012, 41(9): 582-588. | |
19 | KellyK L, CoronadoE A, LinL Z, et al. The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment[J]. Cheminform, 2003, 34(16): 668-677. |
20 | SekhonJ S, VermaS S. Optimal dimensions of gold nanorod for plasmonic nanosensors[J]. Plasmonics, 2011, 6(1):163-169. |
21 | StewartJ W, AkselrodG M, SmithD R, et al. Toward multispectral imaging with colloidal metasurface pixels[J]. Advanced Materials, 2016, 29: 1602971. |
22 | AkselrodG M, HuangJ, HoangT B, et al. Large-area metasurface perfect absorbers from visible to near-infrared.[J]. Advanced Materials, 2015, 27(48): 8028-8034. |
23 | MoreauA, CristianC, MockJ J, et al. Controlled-reflectance surfaces with film-coupled colloidal nanoantennas[J]. Nature, 2012, 492(7427): 86-89. |
24 | LiK, HoganN J, KaleM J, et al. Balancing near-field enhancement, absorption, and scattering for effective antenna-reactor plasmonic photocatalysis[J]. Nano Letters, 2017, 17(6): 3710-3717. |
25 | ShenY, ZhouJ, LiuT, et al. Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit[J]. Nature Communications, 2013, 4: 2381. |
26 | JeonJ W, LedinP A, GeldmeierJ A, et al. Electrically controlled plasmonic behavior of gold nanocube@polyaniline nanostructures: transparent plasmonic aggregates[J]. Chemistry of Materials, 2016, 28(8): 2868-2881. |
27 | MayerK M, HafnerJ H. Localized surface plasmon resonance sensors[J]. Chemical Reviews, 2011, 111(6): 3828-3857. |
28 | LiuS H, HanM Y. Synthesis, functionalization, and bioconjugation of monodisperse, silica-coated gold nanoparticles: robust bioprobes[J]. Advanced Functional Materials, 2005, 15(6): 961-967. |
29 | EnglandG T, RussellC, ShirmanE, et al. The optical janus effect: asymmetric structural color reflection materials[J]. Advanced Materials, 2017, 29(29): 1606876. |
30 | EhrenreichH, PhilippH R, SegallB. Optical properties of aluminum[J]. Physical Review, 1963, 132(5): 1918-1928. |
[1] | 叶展羽, 山訸, 徐震原. 用于太阳能蒸发的折纸式蒸发器性能仿真[J]. 化工学报, 2023, 74(S1): 132-140. |
[2] | 邵苛苛, 宋孟杰, 江正勇, 张旋, 张龙, 高润淼, 甄泽康. 水平方向上冰中受陷气泡形成和分布实验研究[J]. 化工学报, 2023, 74(S1): 161-164. |
[3] | 张义飞, 刘舫辰, 张双星, 杜文静. 超临界二氧化碳用印刷电路板式换热器性能分析[J]. 化工学报, 2023, 74(S1): 183-190. |
[4] | 王志国, 薛孟, 董芋双, 张田震, 秦晓凯, 韩强. 基于裂隙粗糙性表征方法的地热岩体热流耦合数值模拟与分析[J]. 化工学报, 2023, 74(S1): 223-234. |
[5] | 吴延鹏, 李晓宇, 钟乔洋. 静电纺丝纳米纤维双疏膜油性细颗粒物过滤性能实验分析[J]. 化工学报, 2023, 74(S1): 259-264. |
[6] | 宋嘉豪, 王文. 斯特林发动机与高温热管耦合运行特性研究[J]. 化工学报, 2023, 74(S1): 287-294. |
[7] | 张思雨, 殷勇高, 贾鹏琦, 叶威. 双U型地埋管群跨季节蓄热特性研究[J]. 化工学报, 2023, 74(S1): 295-301. |
[8] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[9] | 胡建波, 刘洪超, 胡齐, 黄美英, 宋先雨, 赵双良. 有机笼跨细胞膜易位行为的分子动力学模拟研究[J]. 化工学报, 2023, 74(9): 3756-3765. |
[10] | 齐聪, 丁子, 余杰, 汤茂清, 梁林. 基于选择吸收纳米薄膜的太阳能温差发电特性研究[J]. 化工学报, 2023, 74(9): 3921-3930. |
[11] | 何松, 刘乔迈, 谢广烁, 王斯民, 肖娟. 高浓度水煤浆管道气膜减阻两相流模拟及代理辅助优化[J]. 化工学报, 2023, 74(9): 3766-3774. |
[12] | 邢雷, 苗春雨, 蒋明虎, 赵立新, 李新亚. 井下微型气液旋流分离器优化设计与性能分析[J]. 化工学报, 2023, 74(8): 3394-3406. |
[13] | 韩晨, 司徒友珉, 朱斌, 许建良, 郭晓镭, 刘海峰. 协同处理废液的多喷嘴粉煤气化炉内反应流动研究[J]. 化工学报, 2023, 74(8): 3266-3278. |
[14] | 胡亚丽, 胡军勇, 马素霞, 孙禹坤, 谭学诣, 黄佳欣, 杨奉源. 逆电渗析热机新型工质开发及电化学特性研究[J]. 化工学报, 2023, 74(8): 3513-3521. |
[15] | 张佳怡, 何佳莉, 谢江鹏, 王健, 赵鹬, 张栋强. 渗透汽化技术用于锂电池生产中N-甲基吡咯烷酮回收的研究进展[J]. 化工学报, 2023, 74(8): 3203-3215. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 1016
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 690
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||