1 |
陈宇, 景江, 韩航, 等. 一种氯氧化铋近红外高反射隔热颜料颗粒及制备方法: 107215894A[P]. 2017.
|
|
ChenY, JingJ, HanH, et al. Preparation of bismuth chloride oxide pigment particles with near-infrared high reflectance: 107215894A[P]. 2017.
|
2 |
程明, 吉静. 近红外区具有高反射率的建筑节能涂料的研究进展[J]. 化工进展, 2008, 27(1): 12-15.
|
|
ChengM, JiJ. Development of near-infrared highly reflective coatings on roof surface[J]. Chemical Industry and Engineering Progress, 2008, 27(1): 12-15.
|
3 |
WangK, WangC, YinY, et al. Modification of Al pigment with graphene for infrared/visual stealth compatible fabric coating[J]. Journal of Alloys & Compounds, 2017, 690: 741-748.
|
4 |
张潇予, 张玉军, 龚红宇, 等. 溶胶-凝胶法制备纳米近红外高反射率黑色陶瓷颜料[J]. 功能材料, 2013, 44(3):417−420.
|
|
ZhangX Y, ZhangY J, GongH Y, et al. Preparation of nano-near-infrared high reflectance black ceramic pigments by sol-gel method[J]. Journal of Function Materials, 2013, 44(3): 417−420.
|
5 |
刘兵, 潘士兵, 于名汛, 等. 红外隐身涂料的研究及进展[J]. 兵器材料科学与工程, 2017, (3): 137-142.
|
|
LiuB, PanS B, YuM X, et al. Research and development of infrared stealth coatings[J]. Ordnance Material Science and Engineering, 2017, (3): 137-142.
|
6 |
徐飞凤, 徐国跃, 谭淑娟, 等. 8~14 μm波段低红外发射率与低光泽度兼容涂层的制备方法初探[J]. 兵器材料科学与工程, 2011, (4): 5-9.
|
|
XuF F, XuG Y, TanS J, et al. Preparation methods of low infrared emissivity and low glossiness coatings for 8—14 µm wave band[J]. Ordnance Material Science and Engineering, 2011, (4): 5-9.
|
7 |
李叶. 红外/可见光复合隐身橡胶涂层材料的制备与研究[D]. 太原: 中北大学, 2016.
|
|
LiY. Preparation and research of infrared / visible composite stealth rubber coating material[D]. Taiyuan: North University of China, 2016.
|
8 |
HeL, ZhaoY, XingL, et al. Low infrared emissivity coating based on graphene surface-modified flaky aluminum[J]. Materials, 2018, 11(9): 1502.
|
9 |
LiangJ, LiW, XuG Y, et al. Preparation and characterization of the colored coating with low infrared emissivity based on nanometer pigment[J]. Progress in Organic Coatings, 2018, 115: 74-78.
|
10 |
YuanL , WengX L, XieJ L, et al. Solvothermal synthesis and visible/infrared optical properties of Al/Fe3O4 core–shell magnetic composite pigments[J]. Journal of Alloys & Compounds, 2013, 580(32): 108-113.
|
11 |
YuanL, WengX L, HuL U, et al. Preparation and infrared reflection performance of Al/Cr2O3 composite particles[J]. Journal of Inorganic Materials, 2013, 28(5): 545-550.
|
12 |
LiuY F, XieJ L, LuoM, et al. The synthesis and characterization of Al/Co3O4, magnetic composite pigments with low infrared emissivity and low lightness[J]. Infrared Physics & Technology, 2017, 83: 88-93.
|
13 |
LiuY F, XieJ L, LuoM, et al. The synthesis and optical properties of Al/MnO2 composite pigments by ball-milling for low infrared emissivity and low lightness[J]. Progress in Organic Coatings, 2017, 108: 30-35.
|
14 |
LiuY F, XieJ L, LuoM, et al. Preparation and angle-dependent optical properties of brown Al/MnO2 composite pigments in visible and infrared region[J]. Nanoscale Research Letters, 2017, 12(1): 266.
|
15 |
王振林. 表面等离激元研究新进展[J]. 物理学进展, 2009, 29(3): 287-324.
|
|
WangZ L. New progress in surface plasmon research[J]. Progress in Physics, 2009, 29(3): 287-324.
|
16 |
SekhonJ S, VermaS S. Optimal dimensions of gold nanorod for plasmonic nanosensors[J]. Plasmonics, 2011, 6(1): 163-169.
|
17 |
NikolajsenT, LeossonK, BozhevolnyiS I. Surface plasmon polariton based modulators and switches operating at telecom wavelengths[J]. Applied Physics Letters, 2004, 85(24): 5833.
|
18 |
童廉明, 徐红星. 表面等离激元——机理、应用与展望[J]. 物理, 2012, 41(9): 582-588.
|
|
TongL M, XuH X. Surface plasmons—mechanisms, applications and perspectives[J]. Physics, 2012, 41(9): 582-588.
|
19 |
KellyK L, CoronadoE A, LinL Z, et al. The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment[J]. Cheminform, 2003, 34(16): 668-677.
|
20 |
SekhonJ S, VermaS S. Optimal dimensions of gold nanorod for plasmonic nanosensors[J]. Plasmonics, 2011, 6(1):163-169.
|
21 |
StewartJ W, AkselrodG M, SmithD R, et al. Toward multispectral imaging with colloidal metasurface pixels[J]. Advanced Materials, 2016, 29: 1602971.
|
22 |
AkselrodG M, HuangJ, HoangT B, et al. Large-area metasurface perfect absorbers from visible to near-infrared.[J]. Advanced Materials, 2015, 27(48): 8028-8034.
|
23 |
MoreauA, CristianC, MockJ J, et al. Controlled-reflectance surfaces with film-coupled colloidal nanoantennas[J]. Nature, 2012, 492(7427): 86-89.
|
24 |
LiK, HoganN J, KaleM J, et al. Balancing near-field enhancement, absorption, and scattering for effective antenna-reactor plasmonic photocatalysis[J]. Nano Letters, 2017, 17(6): 3710-3717.
|
25 |
ShenY, ZhouJ, LiuT, et al. Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit[J]. Nature Communications, 2013, 4: 2381.
|
26 |
JeonJ W, LedinP A, GeldmeierJ A, et al. Electrically controlled plasmonic behavior of gold nanocube@polyaniline nanostructures: transparent plasmonic aggregates[J]. Chemistry of Materials, 2016, 28(8): 2868-2881.
|
27 |
MayerK M, HafnerJ H. Localized surface plasmon resonance sensors[J]. Chemical Reviews, 2011, 111(6): 3828-3857.
|
28 |
LiuS H, HanM Y. Synthesis, functionalization, and bioconjugation of monodisperse, silica-coated gold nanoparticles: robust bioprobes[J]. Advanced Functional Materials, 2005, 15(6): 961-967.
|
29 |
EnglandG T, RussellC, ShirmanE, et al. The optical janus effect: asymmetric structural color reflection materials[J]. Advanced Materials, 2017, 29(29): 1606876.
|
30 |
EhrenreichH, PhilippH R, SegallB. Optical properties of aluminum[J]. Physical Review, 1963, 132(5): 1918-1928.
|