化工学报 ›› 2014, Vol. 65 ›› Issue (4): 1145-1161.DOI: 10.3969/j.issn.0438-1157.2014.04.001
周光正, 葛蔚
收稿日期:
2013-12-02
修回日期:
2013-12-11
出版日期:
2014-04-05
发布日期:
2014-04-05
通讯作者:
周光正(1981—),男,博士,副研究员。
作者简介:
周光正(1981—),男,博士,副研究员。
基金资助:
国家自然科学基金项目(21206167,21225628,91334204);中国科学院战略性先导科技专项(XDA07080203)。
ZHOU Guangzheng, GE Wei
Received:
2013-12-02
Revised:
2013-12-11
Online:
2014-04-05
Published:
2014-04-05
Supported by:
supported by the National Natural Science Foundation of China (21206167, 21225628, 91334204) and the "Strategic Priority Research Program" of the Chinese Academy of Sciences (XDA07080203).
摘要: 光滑粒子动力学(smoothed particle hydrodynamics,SPH)是一种纯粹的拉格朗日型无网格数值方法,尤其在处理包含自由表面或多相运动界面的复杂流动问题方面具有独特优势。随着计算精度和稳定性等方面的不断完善,SPH方法已被广泛应用于科学和工程的众多领域。介绍了SPH基础理论的最新成果,重点分析了其在界面流、流固耦合、非牛顿流体等领域的研究进展,并对未来发展进行了展望。
中图分类号:
周光正, 葛蔚. 光滑粒子动力学方法在复杂流动中的研究进展[J]. 化工学报, 2014, 65(4): 1145-1161.
ZHOU Guangzheng, GE Wei. Progress of smoothed particle hydrodynamics in complex flows[J]. CIESC Journal, 2014, 65(4): 1145-1161.
[1] Li S, Liu W K. Meshfree and particle methods and their applications [J]. Applied Mechanics Reviews, 2002, 55: 1-34 [2] Ge W, Li J. Simulation of particle-fluid systems with macro-scale pseudo-particle modeling[J]. Powder Technology, 2003, 137(1/2): 99-108 [3] Liu G R, Gu Y T. An Introduction to Meshfree Methods and Their Programming [M]. Dordrecht: Springer, 2005 [4] Zhang Xiong(张雄), Liu Yan(刘岩), Ma Shang(马上). Meshfree methods and their applications [J]. Advances in Mechanics(力学进展), 2009, 39(1): 1-36 [5] Lucy L B. A numerical approach to the testing of the fission hypothesis [J]. Astronomical Journal, 1977, 82: 1013-1024 [6] Gingold R A, Monaghan J J. Smoothed particle hydrodynamics: theory and application to non-spherical stars [J]. Monthly Notices of the Royal Astronomical Society, 1977, 181: 375-389 [7] Monaghan J J. Smoothed particle hydrodynamics [J]. Annual Review of Astronomy and Astrophysics, 1992, 30: 543-574 [8] Monaghan J J. Smoothed particle hydrodynamics [J]. Reports on Progress in Physics, 2005, 68: 1703-1759 [9] Liu M B, Liu G R. Smoothed particle hydrodynamics(SPH): an overview and recent developments [J]. Archives of Computational Methods in Engineering, 2010, 17(1): 25-76 [10] Liu Moubin(刘谋斌), Zong Zhi(宗智), Chang Jianzhong(常建忠). Developments and applications of smoothed particle hydrodynamics [J]. Advances in Mechanics(力学进展), 2011, 41(2): 217-234 [11] Monaghan J J. Smoothed particle hydrodynamics and its diverse applications [J]. Annual Review of Fluid Mechanics, 2012, 44: 323-346 [12] Morris J P, Fox P J, Zhu Y. Modeling low Reynolds number incompressible flows using SPH [J]. Journal of Computational Physics, 1997, 136: 214-226 [13] Randles P, Libersky L D. Smoothed particle hydrodynamics: some recent improvements and applications [J]. Computer Methods in Applied Mechanics and Engineering, 1996, 139(1): 375-408 [14] Takeda H, Miyama S M, Sekiya M. Numerical simulation of viscous flow by smoothed particle hydrodynamics [J]. Progress of Theoretical Physics, 1994, 92(5): 939-960 [15] Cleary P W, Monaghan J J. Conduction modelling using smoothed particle hydrodynamics [J]. Journal of Computational Physics, 1999, 148(1): 227-264 [16] Sigalotti L D G, Klapp J, Sira E, Meleá Y, Hasmy A. SPH simulations of time-dependent Poiseuille flow at low Reynolds numbers [J]. Journal of Computational Physics, 2003, 191(2): 622-638 [17] Filipovic N, Ivanovic M, Kojic M. A comparative numerical study between dissipative particle dynamics and smoothed particle hydrodynamics when applied to simple unsteady flows in microfluidics [J]. Microfluidics and Nanofluidics, 2009, 7(2): 227-235 [18] Cummins S J, Rudman M. An SPH projection method [J]. Journal of Computational Physics, 1999, 152(2): 584-607 [19] Shao S, Lo E Y M. Incompressible SPH method for simulating Newtonian and non-Newtonian flows with a free surface [J]. Advances in Water Resources, 2003, 26: 787-800 [20] Belytschko T, Krongauz Y, Dolbow J, Gerlach C. On the completeness of meshfree particle methods [J]. International Journal for Numerical Methods in Engineering, 1998, 43: 785-819 [21] Liu M B, Liu G R. Restoring particle consistency in smoothed particle hydrodynamics [J]. Applied Numerical Mathematics, 2006, 56: 19-36 [22] Kiara A, Hendrickson K, Yue D K P. SPH for incompressible free-surface flows(Ⅰ): Error analysis of the basic assumptions [J]. Computers & Fluids, 2013, 86: 611-624 [23] Zhou G, Ge W, Li J. Smoothed particles as a non-Newtonian fluid: a case study in Couette flow [J]. Chemical Engineering Science, 2010, 65: 2258-2262 [24] Zhou G, Ge W, Li J. Theoretical analysis on the applicability of traditional SPH method [J]. Chinese Science Bulletin, 2013, 58(24): 2970-2978 [25] Monaghan J J. Simulating free surface flows with SPH [J]. Journal of Computational Physics, 1994, 110(2): 399-406 [26] Colagrossi A, Landrini M. Numerical simulation of interfacial flows by smoothed particle hydrodynamics [J]. Journal of Computational Physics, 2003, 191(2): 448-475 [27] Chaniotis A K, Poulikakos D, Koumoutsakos P. Remeshed smooth particle hydrodynamics for the simulation of viscous and heat conducting flows [J]. Journal of Computational Physics, 2002, 182: 67-90 [28] Fatehi R, Manzari M T. A consistent and fast weakly compressible smoothed particle hydrodynamics with a new wall boundary condition [J]. International Journal for Numerical Methods in Fluids, 2012, 68(7): 905-921 [29] Ellero M, Serrano M, Español P. Incompressible smoothed particle hydrodynamics [J]. Journal of Computational Physics, 2007, 226(2): 1731-1752 [30] Hu X Y, Adams N A. An incompressible multi-phase SPH method [J]. Journal of Computational Physics, 2007, 227(1): 264-278 [31] Xu R, Stansby P, Laurence D. Accuracy and stability in incompressible SPH(ISPH) based on the projection method and a new approach [J]. Journal of Computational Physics, 2009, 228(18): 6703-6725 [32] Lee E S, Moulinec C, Xu R, Violeau D, Laurence D, Stansby P. Comparisons of weakly compressible and truly incompressible algorithms for the SPH mesh free particle method [J]. Journal of Computational Physics, 2008, 227(18): 8417-8436 [33] Hughes J P, Graham D I. Comparison of incompressible and weakly-compressible SPH models for free-surface water flows [J]. Journal of Hydraulic Research, 2010, 48(S1): 105-117 [34] Shadloo M S, Zainali A, Yildiz M, Suleman A. A robust weakly compressible SPH method and its comparison with an incompressible SPH [J]. International Journal for Numerical Methods in Engineering, 2012, 89(8): 939-956 [35] Szewc K, Pozorski J, Minier J P. Analysis of the incompressibility constraint in the smoothed particle hydrodynamics method [J]. International Journal for Numerical Methods in Engineering, 2012, 92(4): 343-369 [36] Liu W K, Jun S, Zhang Y F. Reproducing kernel particle methods [J]. International Journal for Numerical Methods in Fluids, 1995, 20: 1081-1106 [37] Dilts G A. Moving-least-squares-particle hydrodynamics (Ⅰ): Consistency and stability [J]. International Journal for Numerical Methods in Engineering, 1999, 44: 1115-1155 [38] Chen J K, Beraun J E, Carney T C. A corrective smoothed particle method for boundary value problems in heat conductions [J]. International Journal for Numerical Methods in Engineering, 1999, 46: 231-252 [39] Liu M B, Xie W P, Liu G R. Modeling incompressible flows using a finite particle method [J]. Applied Mathematical Modelling, 2005, 29: 1252-1270 [40] Zhang G M, Batra R C. Symmetric smoothed particle hydrodynamics(SSPH) method and its application to elastic problems [J]. Computational Mechanics, 2009, 43(3): 321-340 [41] Jiang T, Ouyang J, Ren J, Yang B, Xu X. A mixed corrected symmetric SPH(MC-SSPH) method for computational dynamic problems [J]. Computer Physics Communications, 2012, 183: 50-62 [42] Morris J P. Simulating surface tension with smoothed particle hydrodynamics [J]. International Journal for Numerical Methods in Fluids, 2000, 33(3): 333-353 [43] Tartakovsky A M, Meakin P. A smoothed particle hydrodynamics model for miscible flow in three-dimensional fractures and the two-dimensional Rayleigh-Taylor instability [J]. Journal of Computational Physics, 2005, 207: 610-624 [44] Hu X Y, Adams N A. A multi-phase SPH method for macroscopic and mesoscopic flows [J]. Journal of Computational Physics, 2006, 213(2): 844-861 [45] Hu X Y, Adams N A. A constant-density approach for incompressible multi-phase SPH [J]. Journal of Computational Physics, 2009, 228(6): 2082-2091 [46] Adami S, Hu X, Adams N. A new surface-tension formulation for multi-phase SPH using a reproducing divergence approximation [J]. Journal of Computational Physics, 2010, 229(13): 5011-5021 [47] Qiang Hongfu(强洪夫), Chen Fuzhen(陈福振), Gao Weiran(高巍然). Smoothed particle hydrodynamics method with modified surface tension and its implementation [J]. Chinese Journal of Computational Physics(计算物理) , 2011, 28(3): 375-384 [48] Zhang M. Simulation of surface tension in 2D and 3D with smoothed particle hydrodynamics method [J]. Journal of Computational Physics, 2010, 229: 7238-7259 [49] Zhang M, Zhang S, Zhang H, Zheng L. Simulation of surface- tension-driven interfacial flow with smoothed particle hydrodynamics method [J]. Computers & Fluids, 2012, 59: 61-71 [50] Tofighi N, Yildiz M. Numerical simulation of single droplet dynamics in three-phase flows using ISPH [J]. Computers & Mathematics with Applications, 2013, 66(4): 525-536 [51] Posch H A, Hoover W G, Kum O. Steady-state shear flows via nonequilibrium molecular dynamics and smooth-particle applied mechanics [J]. Physical Review E, 1995, 52: 1711-1720 [52] Hoover W G, Hess S. Equilibrium and nonequilibrium thermomechanics for an effective pair poterntial used in smooth particle applied mechanics [J]. Physica A, 1996, 231: 425-438 [53] Español P, Revenga M. Smoothed dissipative particle dynamics [J]. Physical Review E, 2003, 67: 026705 [54] Tartakovsky A M, Meakin P. Modeling of surface tension and contact angles with smoothed particle hydrodynamics [J]. Physical Review E, 2005, 72: 026301 [55] Tartakovsky A M, Meakin P. Pore scale modeling of immiscible and miscible fluid flows using smoothed particle hydrodynamics [J]. Advances in Water Resources, 2006, 29: 1464-1478 [56] Tartakovsky A M, Ward A L, Meakin P. Pore-scale simulations of drainage of heterogeneous and anisotropic porous media [J]. Physics of Fluids, 2007, 19: 103301 [57] Ma Liqiang(马理强), Chang Jianzhong(常建忠), Liu Hantao(刘汉涛), Liu Moubin(刘谋斌). Numerical simulation of droplet impact on liquid with smoothed particle hydrodynamics method [J]. Acta Physica Sinica(物理学报), 2012, 61(5): 054701 [58] Su Tiexiong(苏铁熊), Ma Liqiang(马理强), Liu Moubin(刘谋斌), Chang Jianzhong(常建忠). A numerical analysis of drop impact on solid surfaces by using smoothed particle hydrodynamics method [J]. Acta Physica Sinica(物理学报), 2013, 62(6): 064702 [59] Zhou G, Ge W, Li J. A revised surface tension model for macro-scale particle methods [J]. Powder Technology, 2008, 183: 21-26 [60] Zhou G, Chen Z, Ge W, Li J. SPH simulation of oil displacement in cavity-fracture structures [J]. Chemical Engineering Science, 2010, 65: 3363-3371 [61] Zhou G, Ge W, Li B, Li X, Wang P, Wang J, Li J. SPH simulation of selective withdrawal from microcavity [J]. Microfluidics and Nanofluidics, 2013, 15(4): 481-490 [62] Grenier N, Antuono M, Colagrossi A, Le Touzé D, Alessandrini B. An Hamiltonian interface SPH formulation for multi-fluid and free surface flows [J]. Journal of Computational Physics, 2009, 228(22): 8380-8393 [63] Szewc K, Pozorski J, Minier J P. Simulations of single bubbles rising through viscous liquids using smoothed particle hydrodynamics [J]. International Journal of Multiphase Flow, 2013, 50: 98-105 [64] Das A K, Das P K. Bubble evolution through submerged orifice using smoothed particle hydrodynamics: basic formulation and model validation [J]. Chemical Engineering Science, 2009, 64(10): 2281-2290 [65] Monaghan J J, Rafiee A. A simple SPH algorithm for multi-fluid flow with high density ratios [J]. International Journal for Numerical Methods in Fluids, 2013, 71(5): 537-561 [66] Nugent S, Posch H A. Liquid drops and surface tension with smoothed particle applied mechanics [J]. Physical Review E, 2000, 62(4): 4968-4975 [67] Meleán Y, Sigalotti L D G. Coalescence of colliding van der Waals liquid drops [J]. International Journal of Heat and Mass Transfer, 2005, 48(19): 4041-4061 [68] López H, Sigalotti L D G. Oscillation of viscous drops with smoothed particle hydrodynamics [J]. Physical Review E, 2006, 73(5): 051201 [69] Tartakovsky A M, Ferris K F, Meakin P. Lagrangian particle model for multiphase flows [J]. Computer Physics Communications, 2009, 180: 1874-1881 [70] Han Xu(韩旭), Yang Gang(杨刚), Long Shuyao(龙述尧). Typical application of SPH method to two-phase flow problems [J]. Journal of Hunan University: Natural Sciences(湖南大学学报: 自然科学版), 2007, 34(1): 29-32 [71] Liu M B, Liu G R, Lam K Y, Zong Z. Smoothed particle hydrodynamics for numerical simulation of underwater explosion [J]. Computational Mechanics, 2003, 30(2): 106-118 [72] Xu Z, Meakin P, Tartakovsky A M. Diffuse-interface model for smoothed particle hydrodynamics [J]. Physical Review E, 2009, 79: 036702 [73] Das A K, Das P K. Simulation of drop movement over an inclined surface using smoothed particle hydrodynamics [J]. Langmuir, 2009, 25(19): 11459-11466 [74] Das A K, Das P K. Incorporation of diffuse interface in smoothed particle hydrodynamics: implementation of the scheme and case studies [J]. International Journal for Numerical Methods in Fluids, 2011, 67(6): 671-699 [75] Farhat C, Geuzaine P, Brown G. Application of a three-field nonlinear fluid-structure formulation to the prediction of the aeroelastic parameters of an F-16 fighter [J]. Computers & Fluids, 2003, 32: 3-29 [76] Mittal R, Iaccarino G. Immersed boundary methods [J]. Annual Review of Fluid Mechanics, 2005, 37: 239-261 [77] Yu Z. A DLM/FD method for fluid/flexible-body interactions [J]. Journal of Computational Physics, 2005, 207(1): 1-27 [78] Monaghan J J, Kos A, Issa N. Fluid motion generated by impact [J]. Journal of Waterway, Port, Coastal, and Ocean Engineering, 2003, 129(6): 250-259 [79] Qiu L. Two-dimensional SPH simulations of landslide-generated water waves [J]. Journal of Hydraulic Engineering, 2008, 134(5): 668-671 [80] Kajtar J, Monaghan J J. SPH simulations of swimming linked bodies [J]. Journal of Computational Physics, 2008, 227(19): 8568-8587 [81] Oger G, Doring M, Alessandrini B, Ferrant P. Two-dimensional SPH simulations of wedge water entries [J]. Journal of Computational Physics, 2006, 213(2): 803-822 [82] Shao S. Incompressible SPH simulation of water entry of a free-falling object [J]. International Journal for Numerical Methods in Fluids, 2009, 59(1): 91-115 [83] Omidvar P, Stansby P K, Rogers B D. Wave body interaction in 2D using smoothed particle hydrodynamics(SPH) with variable particle mass [J]. International Journal for Numerical Methods in Fluids, 2012, 68(6): 686-705 [84] Potapov A V, Hunt M L, Campbell C S. Liquid-solid flows using smoothed particle hydrodynamics and the discrete element method [J]. Powder Technology, 2001, 116(2): 204-213 [85] Qiu L. Numerical modelling of liquid-particle flows by combining SPH and DEM [J]. Industrial & Engineering Chemistry Research, 2013, 52(33): 11313-11318 [86] Ma J, Ge W, Wang X, Wang J, Li J. High-resolution simulation of gas-solid suspension using macro-scale particle methods [J]. Chemical Engineering Science, 2006, 61(21): 7096-7106 [87] Xiong Q, Li B, Chen F, Ma J, Ge W, Li J. Direct numerical simulation of sub-grid structures in gas-solid flow—GPU implementation of macro-scale pseudo-particle modeling [J]. Chemical Engineering Science, 2010, 65(19): 5356-5365 [88] Sun X, Sakai M, Yamada Y. Three-dimensional simulation of a solid-liquid flow by the DEM-SPH method [J]. Journal of Computational Physics, 2013, 248: 147-176 [89] Robinson M, Ramaioli M, Luding S. Fluid-particle flow simulations using two-way-coupled mesoscale SPH-DEM and validation [J]. International Journal of Multiphase Flow, 2014, 59: 121-134 [90] Monaghan J J, Kocharyan A. SPH simulation of multi-phase flow [J]. Computer Physics Communication, 1995, 87: 225-235 [91] Xiong Q, Deng L, Wang W, Ge W. SPH method for two-fluid modeling of particle-fluid fluidization [J]. Chemical Engineering Science, 2011, 66(9): 1859-1865 [92] Deng L, Liu Y, Wang W, Ge W, Li J. A two-fluid smoothed particle hydrodynamics(TF-SPH) method for gas-solid fluidization [J]. Chemical Engineering Science, 2013, 99: 89-101 [93] Benz W, Asphaug E. Simulations of brittle solids using smooth particle hydrodynamics [J]. Computer Physics Communications, 1995, 87(1/2): 253-265 [94] Zhang Gangming(张刚明), Wang Xiaojun(王肖钧), Wang Yuanbo(王元博), Wang Ji(王吉), Wang Feng(王峰). Smoothed particle hydrodynamics method to numerical simulation of hypervelocity impact [J]. Chinese Journal of Computational Physics(计算物理), 2003, 20(5): 447-454 [95] Swegle J, Hicks D, Attaway S. Smoothed particle hydrodynamics stability analysis [J]. Journal of Computational Physics, 1995, 116(1): 123-134 [96] Fu Xuejin(傅学金), Qiang Hongfu(强洪夫), Yang Yuecheng(杨月诚). Advances in the tensile instability of smoothed particle hydrodynamics applied to solid dynamics [J]. Advances in Mechanics (力学进展), 2007, 37(3): 375-388 [97] Dyka C T, Randles P W, Ingel R P. Stress points for tension instability in SPH [J]. International Journal for Numerical Methods in Engineering, 1997, 40(13): 2325-2341 [98] Rabczuk T, Belytschko T, Xiao S. Stable particle methods based on Lagrangian kernels [J]. Computer Methods in Applied Mechanics and Engineering, 2004, 193(12):1035-1063 [99] Chen J K, Beraun J E, Jih C J. An improvement for tensile instability in smoothed particle hydrodynamics [J]. Computational Mechanics, 1999, 23(4): 279-287 [100] Yang Xiufeng(杨秀峰), Liu Moubin(刘谋斌). Improvement on stress instability in smoothed particle hydrodynamics [J]. Acta Physica Sinica(物理学报), 2012, 61(22): 224701 [101] Qiu Liuchao(邱流潮). Numerical simulation of deformation process of viscous liquid drop based on the incompressible smoothed particle hydrodynamics [J]. Acta Physica Sinica(物理学报), 2013, 62(12): 124702 [102] Monaghan J J. SPH without a tensile instability [J]. Journal of Computational Physics, 2000, 159(2): 290-311 [103] Gray J P, Monaghan J J, Swift R P. SPH elastic dynamics [J]. Computer Methods in Applied Mechanics and Engineering, 2001, 190(49): 6641-6662 [104] Antoci C, Gallati M, Sibilla S. Numerical simulation of fluid-structure interaction by SPH [J]. Computers & Structures, 2007, 85(11): 879-890 [105] Amini Y, Emdad H, Farid M. A new model to solve fluid-hypo-elastic solid interaction using the smoothed particle hydrodynamics(SPH) method [J]. European Journal of Mechanics B/Fluids, 2011, 30(2): 184-194 [106] Rafiee A, Thiagarajan K P. An SPH projection method for simulating fluid-hypoelastic structure interaction [J]. Computer Methods in Applied Mechanics and Engineering, 2009, 198: 2785-2795 [107] Xiao Yihua(肖毅华), Han Xu(韩旭), Hu De’an(胡德安). Simulating fluid-structure interaction with FE-SPH method [J]. Chinese Journal of Applied Mechanics(应用力学学报), 2011, 28(1): 13-18 [108] Chen D T N, Wen Q, Janmey P A, Crocker J C, Yodh A G. Rheology of soft materials [J]. Annual Review of Condensed Matter Physics, 2010, 1: 301-322 [109] Xu X, Ouyang J, Yang B, Liu Z. SPH simulations of three-dimensional non-Newtonian free surface flows [J]. Computer Methods in Applied Mechanics and Engineering, 2013, 256: 101-116 [110] Zhu H, Martys N S, Ferraris C, Kee D D. A numerical study of the flow of Bingham-like fluids in two-dimensional vane and cylinder rheometers using a smoothed particle hydrodynamics(SPH) based method [J]. Journal of Non-Newtonian Fluid Mechanics, 2010, 165(7/8): 362-375 [111] Fan X J, Tanner R, Zheng R. Smoothed particle hydrodynamics simulation of non-Newtonian moulding flow [J]. Journal of Non-Newtonian Fluid Mechanics, 2010, 165(5): 219-226 [112] Hosseini S, Manzari M, Hannani S. A fully explicit three-step SPH algorithm for simulation of non-Newtonian fluid flow [J]. International Journal of Numerical Methods for Heat & Fluid Flow, 2007, 17(7): 715-735 [113] Ellero M, Kröger M, Hess S. Viscoelastic flows studied by smoothed particle dynamics [J]. Journal of Non-Newtonian Fluid Mechanics, 2002, 105(1): 35-51 [114] Ellero M, Tanner R I. SPH simulations of transient viscoelastic flows at low Reynolds number [J]. Journal of Non-Newtonian Fluid Mechanics, 2005, 132(1/2/3): 61-72 [115] Vázquez-Quesada A, Ellero M. SPH simulations of a viscoelastic flow around a periodic array of cylinders confined in a channel [J]. Journal of Non-Newtonian Fluid Mechanics, 2012, 167/168: 1-8 [116] Hashemi M, Fatehi R, Manzari M. SPH simulation of interacting solid bodies suspended in a shear flow of an Oldroyd-B fluid [J]. Journal of Non-Newtonian Fluid Mechanics, 2011, 166(21): 1239-1252 [117] Zainali A, Tofighi N, Shadloo M S, Yildiz M. Numerical investigation of Newtonian and non-Newtonian multiphase flows using ISPH method [J]. Computer Methods in Applied Mechanics and Engineering, 2013, 254: 99-113 [118] Yang Bo(杨波),Ouyang Jie(欧阳洁),Jiang Tao(蒋涛),Xu Xiaoyang(许晓阳). Numerical simulation of the viscoelastic flows for PTT model by the SPH method [J]. Chinese Journal of Theoretical and Applied Mechanics(力学学报), 2011, 43(4): 667-773 [119] Ren J, Ouyang J, Jiang T, Li Q. A corrected symmetric SPH method to simulate viscoelastic free surface flows based on the PTT model [J]. International Journal for Numerical Methods in Fluids, 2012, 70(12): 1494-1517 [120] Xu X, Ouyang J. An SPH-based particle method for simulating 3D transient free surface flows of branched polymer melts [J]. Journal of Non-Newtonian Fluid Mechanics, 2013, 202: 54-71 [121] Ji Shunying(季顺迎), Yue Qianjin(岳前进). Numerical simulation of local drifting sea ice in Liaodong Bay by smoothed particle hydrodynamics method [J]. Hydro-science and Engineering(水利水运工程学报), 2001, 4: 8-15 [122] Ji Shunying(季顺迎), Yue Qianjin(岳前进), Wang Ruixue(王瑞学). Advances in numerical methods for sea ice dynamics [J]. Advances in Earth Science(地球科学进展), 2004, 19(6): 963-970 [123] Fang J, Owens R G, Tacher L, Parriaux A. A numerical study of the SPH method for simulating transient viscoelastic free surface flows [J]. Journal of Non-Newtonian Fluid Mechanics, 2006, 139(1): 68-84 [124] Rafiee A, Manzari M, Hosseini M. An incompressible SPH method for simulation of unsteady viscoelastic free-surface flows [J]. International Journal of Non-linear Mechanics, 2007, 42(10): 1210-1223 [125] Jiang T, Ouyang J, Yang B, Ren J. The SPH method for simulating a viscoelastic drop impact and spreading on an inclined plate [J]. Computational Mechanics, 2010, 45(6): 573-583 [126] Xu X, Ouyang J, Jiang T, Li Q. Numerical simulation of 3D-unsteady viscoelastic free surface flows by improved smoothed particle hydrodynamics method [J]. Journal of Non-Newtonian Fluid Mechanics, 2012, 177-178: 109-120 [127] Dalrymple R A, Rogers B D. Numerical modeling of water waves with the SPH method [J]. Coastal Engineering, 2006, 53(2): 141-147 [128] Shao S, Ji C, Graham D I, Reeve D E, James P W, Chadwick A J. Simulation of wave overtopping by an incompressible SPH model [J]. Coastal Engineering, 2006, 53(9): 723-735 [129] Shi Y, Ellero M, Adams N A. Analysis of intermittency in under-resolved smoothed-particle-hydrodynamics direct numerical simulations of forced compressible turbulence [J]. Physical Review E, 2012, 85(3): 036708 [130] Szewc K, Pozorski J, Tanière A. Modeling of natural convection with smoothed particle hydrodynamics: non-Boussinesq formulation [J]. International Journal of Heat and Mass Transfer, 2011, 54(23): 4807-4816 [131] Tartakovsky A M, Meakin P, Scheibe T D, West R M E. Simulations of reactive transport and precipitation with smoothed particle hydrodynamics [J]. Journal of Computational Physics, 2007, 222(2): 654-672 [132] Tartakovsky A M. Langevin model for reactive transport in porous media [J]. Physical Review E, 2010, 82(2): 026302 [133] Vanaverbeke S, Keppens R, Poedts S, Boffin H. GRADSPH: a parallel smoothed particle hydrodynamics code for self-gravitating astrophysical fluid dynamics [J]. Computer Physics Communications, 2009, 180(7): 1164-1182 [134] Cherfils J, Pinon G, Rivoalen E. JOSEPHINE: a parallel SPH code for free-surface flows [J]. Computer Physics Communications, 2012, 183(7): 1468-1480 [135] Gomez-Gesteira M, Rogers B, Crespo A, Dalrymple R, Narayanaswamy M, Dominguez J. SPHysics — development of a free-surface fluid solver (Ⅰ): Theory and formulations [J]. Computers & Geosciences, 2012, 48: 289-299 [136] Domínguez J M, Crespo A J C, Gómez-Gesteira M. Optimization strategies for CPU and GPU implementations of a smoothed particle hydrodynamics method [J]. Computer Physics Communications, 2013, 184: 617-627 [137] Xiong Q, Li B, Xu J. GPU-accelerated adaptive particle splitting and merging in SPH [J]. Computer Physics Communications, 2013, 184: 1701-1707 [138] Lastiwka M, Quinlan N, Basa M. Adaptive particle distribution for smoothed particle hydrodynamics [J]. International Journal for Numerical Methods in Fluids, 2005, 47(10/11): 1403-1409 [139] Feldman J, Bonet J. Dynamic refinement and boundary contact forces in SPH with applications in fluid flow problems [J]. International Journal for Numerical Methods in Engineering, 2007, 72(3): 295-324 [140] Vacondio R, Rogers B D, Stansby P K, Mignosa P, Feldman J. Variable resolution for SPH: a dynamic particle coalescing and splitting scheme [J]. Computer Methods in Applied Mechanics and Engineering, 2013, 256: 132-148 [141] Koumoutsakos P. Multiscale flow simulations using particles [J]. Annual Review of Fluid Mechanics, 2005, 37: 457-487 |
[1] | 周绍华, 詹飞龙, 丁国良, 张浩, 邵艳坡, 刘艳涛, 郜哲明. 短管节流阀内流动噪声的实验研究及降噪措施[J]. 化工学报, 2023, 74(S1): 113-121. |
[2] | 叶展羽, 山訸, 徐震原. 用于太阳能蒸发的折纸式蒸发器性能仿真[J]. 化工学报, 2023, 74(S1): 132-140. |
[3] | 张龙, 宋孟杰, 邵苛苛, 张旋, 沈俊, 高润淼, 甄泽康, 江正勇. 管翅式换热器迎风侧翅片末端霜层生长模拟研究[J]. 化工学报, 2023, 74(S1): 179-182. |
[4] | 张义飞, 刘舫辰, 张双星, 杜文静. 超临界二氧化碳用印刷电路板式换热器性能分析[J]. 化工学报, 2023, 74(S1): 183-190. |
[5] | 王志国, 薛孟, 董芋双, 张田震, 秦晓凯, 韩强. 基于裂隙粗糙性表征方法的地热岩体热流耦合数值模拟与分析[J]. 化工学报, 2023, 74(S1): 223-234. |
[6] | 江河, 袁俊飞, 王林, 邢谷雨. 均流腔结构对微细通道内相变流动特性影响的实验研究[J]. 化工学报, 2023, 74(S1): 235-244. |
[7] | 宋嘉豪, 王文. 斯特林发动机与高温热管耦合运行特性研究[J]. 化工学报, 2023, 74(S1): 287-294. |
[8] | 张思雨, 殷勇高, 贾鹏琦, 叶威. 双U型地埋管群跨季节蓄热特性研究[J]. 化工学报, 2023, 74(S1): 295-301. |
[9] | 肖明堃, 杨光, 黄永华, 吴静怡. 浸没孔液氧气泡动力学数值研究[J]. 化工学报, 2023, 74(S1): 87-95. |
[10] | 温凯杰, 郭力, 夏诏杰, 陈建华. 一种耦合CFD与深度学习的气固快速模拟方法[J]. 化工学报, 2023, 74(9): 3775-3785. |
[11] | 王玉兵, 李杰, 詹宏波, 朱光亚, 张大林. R134a在菱形离散肋微小通道内的流动沸腾换热实验研究[J]. 化工学报, 2023, 74(9): 3797-3806. |
[12] | 陈哲文, 魏俊杰, 张玉明. 超临界水煤气化耦合SOFC发电系统集成及其能量转化机制[J]. 化工学报, 2023, 74(9): 3888-3902. |
[13] | 宋明昊, 赵霏, 刘淑晴, 李国选, 杨声, 雷志刚. 离子液体脱除模拟油中挥发酚的多尺度模拟与研究[J]. 化工学报, 2023, 74(9): 3654-3664. |
[14] | 袁佳琦, 刘政, 黄锐, 张乐福, 贺登辉. 泡状入流条件下旋流泵能量转换特性研究[J]. 化工学报, 2023, 74(9): 3807-3820. |
[15] | 胡建波, 刘洪超, 胡齐, 黄美英, 宋先雨, 赵双良. 有机笼跨细胞膜易位行为的分子动力学模拟研究[J]. 化工学报, 2023, 74(9): 3756-3765. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||