[1] |
Sumida K, Rogow D L, Mason J A, McDonald T M, Bloch E D, Herm Z R, Bae T, Long J R. Carbon dioxide capture in metal-organic frameworks[J]. Chem. Rev., 2012, 112(2): 724-781
|
[2] |
Kong Xiangming(孔祥明), Yang Ying(杨颖), Shen Wenlong(沈文龙), Li Ping(李平), Yu Jianguo(于建国). Adsorption equilibrium of CO2, CH4 and N2 on zeolite 13X-APG[J]. CIESC Journal (化工学报), 2013, 64(6): 2117-2124
|
[3] |
Wu D, Yang Q, Zhong C, Liu D, Huang H, Zhang W, Maurin G. Revealing the structure-property relationships of metal-organic frameworks for CO2 capture from flue gas[J]. Langmuir, 2012, 28(33): 12094-12099
|
[4] |
Yan Q, Lin Y, Kong C, Chen L. Remarkable CO2/CH4 selectivity and CO2 adsorption capacity exhibited by polyamine-decorated metal-organic framework adsorbents[J]. Chem. Commun., 2013, 49: 6873-6875
|
[5] |
Bae Y, Snurr R Q. Development and evaluation of porous materials for carbon dioxide separation and capture[J]. Angew. Chem. Int. Ed., 2011, 50: 11586-11596
|
[6] |
Stavitski E, Pidko E A, Couck S, Remy T, Hensen E J M, Weckhuysen B M, Denayer J, Gascon J, Kapteijn F. Complexity behind CO2 capture on NH2-MIL-53(Al) [J]. Langmuir, 2011, 27: 3970-3976
|
[7] |
Yang Q, Vaesen S, Ragon F, Wiersum A D, Wu D, Lago A, Devic T, Martineau C, Taulelle F, Llewellyn P L, Jobic H, Zhong C, Serre C, Weireld G D, Maurin G. A water stable metal-organic frameworks with optimal features for CO2 capture[J]. Angew. Chem. Ind. Ed., 2013, 52: 10316-10320
|
[8] |
Yang Qingyuan(阳庆元), Liu Dahuan(刘大欢), Zhong Chongli(仲崇立). Computational study of metal-organic frameworks[J]. CIESC Journal (化工学报), 2009, 60(4): 805-819
|
[9] |
Huang H, Zhang W, Liu D, Liu B, Chen G, Zhong C. Effect of temperature on gas adsorption and separation in ZIF-8: a combined experimental and molecular simulation study[J]. Chem. Eng. Sci., 2011, 66: 6297-6305
|
[10] |
Murray L J, Dinca M, Long J R. Hydrogen storage in metal-organic frameworks[J]. Chem. Soc. Rev., 2009, 38: 1294-1314
|
[11] |
Si X, Jiao C, Li F, Zhang J, Wang S, Liu S, Li Z, Sun L, Xu F, Gabelica Z, Schick C. High and selective CO2 uptake, H2 storage and methanol sensing on the amine-decorated 12-connected MOF CAU-1[J]. Energy Environ. Sci., 2011, 4: 4522-4527
|
[12] |
Ma L, Abney C, Lin W. Enantioselective catalysis with homochiral metal-organic frameworks[J]. Chem. Soc. Rev., 2009, 38: 1248-1256
|
[13] |
Cui Y, Yue Y, Qian G, Chen B. Luminescent functional metal-organic frameworks[J]. Chem. Rev., 2012, 112: 1126-1162
|
[14] |
Greathouse J A, Allendorf M D. The interaction of water with MOF-5 simulated by molecular dynamics[J]. J. Am. Chem. Soc., 2006, 128: 10678-10679
|
[15] |
Saha D, Deng S. Structural stability of metal organic framework MOF-177[J]. J. Phys. Chem. Lett., 2010, 1: 73-78
|
[16] |
DeCoste J B, Peterson G W, Schindler B J, Killops K L, Browe M A, Mahle J J. The effect of water adsorption on the structure of the carboxylate containing metal-organic frameworks Cu-BTC, Mg-MOF-74, and UiO-66[J]. J. Mater. Chem. A, 2013, 1: 11922-11932
|
[17] |
Park K S, Ni Z, Cote A P, Choi J Y, Huang R, Uribe-Romo F J, Chae H K, O'Keeffe M, Yaghi O M. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks[J]. PNAS, 2006, 103(27): 10186-10191
|
[18] |
Low J J, Benin A I, Jakubczak P, Abrahamian J F, Faheem S A, Willis R R. Virtual high throughput screening confirmed experimentally: porous coordination polymer hydration[J]. J. Am. Chem. Soc., 2009, 131: 15834-15842
|
[19] |
Horcajada P, Surble S, Serre C, Hong D, Seo Y, Chang J, Greneche J, Margiolaki I, Ferey G. Synthesis and catalytic properties of MIL-100(Fe), an iron(Ⅲ) carboxylate with large pores[J]. Chem. Commun., 2007(27): 2820-2822
|
[20] |
Volkringer C, Popov D, Loiseau T, Férey G, Burghammer M, Riekel C, Haouas M, Taulelle F. Synthesis, single-crystal X-ray microdiffraction, and NMR characterizations of the giant pore metal-organic framework aluminum trimesate MIL-100[J]. Chem. Mater., 2009, 21: 5695-5697
|
[21] |
Jeremias F, Khutia A, Henninger S K, Janiak C. MIL-100(Al, Fe) as water adsorbents for heat transformation purposes—a promising application[J]. J. Mater. Chem., 2012, 22: 10148-10151
|
[22] |
Millange F, Serre C, Férey G. Synthesis, structure determination and properties of MIL-53as and MIL-53ht: the first CrⅢ hybrid inorganic-organic microporous solids: CrⅢ(OH)·{O2C-C6H4-CO2} {HO2C-C6H4-CO2H}x[J]. Chem. Commun., 2002: 822-823
|
[23] |
Kang I J, Khan N A, Haque E, Jhung S H. Chemical and thermal stability of isotypic metal-organic frameworks: effect of metal ions[J]. Chem. Eur. J., 2011, 17: 6437-6442
|
[24] |
Cavka J H, Jakobsen S, Olsbye U, Guillou N, Lamberti C, Bordiga S, Lillerud K P. A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability[J]. J. Am. Chem. Soc., 2008, 130: 13850-13851
|
[25] |
Bon V, Senkovska I, Baburin I A, Kaskel S. Zr- and Hf-based metal-organic frameworks: tracking down the polymorphism[J]. Cryst. Growth Des., 2013, 13: 1231-1237
|
[26] |
Feng D, Jiang H, Chen Y, Gu Z, Wei Z, Zhou H. Metal-organic frameworks based on previously unknown Zr8/Hf8 cubic clusters[J]. Inorg. Chem., 2013, 52: 12661-12667
|
[27] |
Jakobsen S, Gianolio D, Wragg D S, Nilsen M H, Emerich H, Bordiga S, Lamberti C, Olsbye U, Tilset M, Lillerud K P. Structural determination of a highly stable metal-organic framework with possible application to interim radioactive waste scavenging: Hf-UiO-66[J]. Physical Review B, 2012, 86: 125429-125440
|
[28] |
Kim M, Cahill J F, Fei H, Prather K A, Cohen S M. Postsynthetic ligand and cation exchange in robust metal-organic frameworks[J]. J. Am. Chem. Soc., 2012, 134: 18082-18088
|
[29] |
Eddaoudi M, Kim J, Rosi N, Vodak D, Wachter J, O'Keeffe M, Yaghi O M. Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage[J]. Science, 2002, 295: 469-472
|
[30] |
Deng H, Grunder S, Cordova K E, Valente C, Furukawa H, Hmadeh M, Gandara F, Whalley A C, Liu Z, Asahina S, Kazumori H, O'Keeffe M, Terasaki O, Stoddart J F, Yaghi O M. Large-pore apertures in a series of metal-organic frameworks[J]. Science, 2012, 336: 1018-1023
|
[31] |
Cordero B, Gómez V, Platero-Prats A E, Revés M, Echeverría J, Cremades E, Barragán F, Alvarez S. Covalent radii revisited[J]. Dalton. Trans., 2008(21): 2832-2839
|
[32] |
Wiβmann G, Schaate A, Lilienthal S, Bremer I, Schneider A M. Modulated synthesis of Zr-fumarate MOF[J]. Microporous and Mesoporous Materials, 2012, 152: 64-70
|
[33] |
Zhang W, Huang H, Zhong C, Liu D. Cooperative effect of temperature and linker functionality on CO2 capture from industrial gas mixtures in metal-organic frameworks: a combined experimental and molecular simulation study[J]. Phys. Chem. Chem. Phys., 2012, 14: 2317-2325
|
[34] |
Schaate A, Roy P, Godt A, Lippke J, Waltz F, Wiebcke M, Behrens P. Modulated synthesis of Zr-based metal-organic frameworks: from nano to single crystals[J]. Chem. Eur. J., 2011, 17: 6643-6651
|
[35] |
Guillerm V, Gross S, Serre C, Devic T, Bauer M, Ferey G. A zirconium methacrylate oxocluster as precursor for the low-temperature synthesis of porous zirconium(Ⅳ) dicarboxylates[J]. Chem. Commun., 2010, 46: 767-769
|
[36] |
Decoste J B, Peterson G W, Jasuja H, Glover T G, Huang Y, Walton K S. Stability and degradation mechanisms of metal-organic frameworks containing the Zr6O4(OH)4 secondary building unit[J]. J. Mater. Chem. A, 2013, 1: 5642-5650
|
[37] |
Küsgens P, Rose M, Senkovska I, Fröde H, Henschel A, Siegle S, Kaskel S. Characterization of metal-organic frameworks by water adsorption[J]. Microporous and Mesoporous Materials, 2009, 120: 235-330
|
[38] |
Tsuruoka T, Furukawa S, Takashima Y, Yoshida K, Isoda S, Kitagawa S. Nanoporous nanorods fabricated by coordination modulation and oriented attachment growth[J]. Angew. Chem. Int. Ed., 2009, 48: 4739-4743
|
[39] |
Zhang Z, Li Z, Li J. Computational study of adsorption and separation of CO2, CH4, and N2 by an rht-type metal-organic framework[J]. Langmuir, 2012, 28: 12122-12133
|
[40] |
Yang Q, Zhong C, Chen J. Computational study of CO2 storage in metal-organic frameworks[J]. J. Phys. Chem. C, 2008, 112: 1562- 1596
|
[41] |
Yazaydin A Ö, Snurr R Q, Park T, Koh K, Liu J, LeVan M D, Benin A I, Jakubczak P, Lanuza M, Gallowway D B, Low J J, Willis R R. Screening of metal-organic frameworks for carbon dioxide capture from flue gas using a combined experimental and modeling approach[J]. J. Am. Chem. Soc., 2009, 131: 18198-18199
|
[42] |
Morris W, Leung B, Furukawa H, Yaghi O K, He N, Hayashi H, Houndonougbo Y, Asta M, Laird B B, Yaghi O M. A combined experimental-computational investigation of carbon dioxide capture in a series of isoreticular zeolitic imidazolate frameworks[J]. J. Am. Chem. Soc., 2010, 132: 11006-11008
|
[43] |
Banerjee R, Furukawa H, Britt D, Knobler C, O'Keeffe M, Yaghi O M. Control of pore size and functionality in isoreticular zeolitic imidazolate frameworks and their carbon dioxide selective capture properties[J]. J. Am. Chem. Soc., 2009, 131: 3875-3877
|
[44] |
Wang B, Côté A P, O'Keeffe M, Yaghi O M. Colossal cages in zeolitic imidazolate frameworks as selective carbon dioxide reservoirs[J]. Nature, 2008, 453: 207-202
|
[45] |
An J, Geib S J, Rosi N L. High and selective CO2 uptake in a cobalt adeninate metal-organic framework exhibiting pyrimidine- and amino-decorated pores[J]. J. Am. Chem. Soc., 2010, 132: 38-39
|
[46] |
Chen Z, Xiang S, Arman H, Li P, Zhao D, Chen B. Significantly enhanced CO2/CH4 separation selectivity within a 3D prototype metal-organic framework functionalized with OH groups on pore surfaces at room temperature[J]. Eur. J. Inorg. Chem., 2011(14): 2227-2231
|
[47] |
Munusamy K, Sethia G, Patil D V, Rallapalli P B S, Somani R S. Sorption of carbon dioxide, methane, nitrogen and carbon monoxide on MIL-101(Cr): volumetric measurements and dynamic adsorption studies[J]. Chemical Engineering Journal, 2012, 195: 359-368
|
[48] |
Kim S, Kim J, Kim H, Cho H, Ahn W. Adsorption/catalytic properties of MIL-125 and NH2-MIL-125[J]. Catalysis Today, 2013, 204: 85-93
|
[49] |
Cho H, Yang D, Kim J, Jeong S, Ahn W. CO2 adsorption and catalytic application of Co-MOF-74 synthesized by microwave heating[J]. Catalysis Today, 2012, 185: 35-40
|
[50] |
Yang Q, Guillerm V, Ragon F, Wiersum A D, Llewellyn P L, Zhong C, Devic T, Serre C, Maurin G. CH4 storage and CO2 capture in highly porous zirconium oxide based metal-organic frameworks[J]. Chem. Commun., 2012, 48: 9831-9833
|
[51] |
Ribeiro R P, Sauer T P, Lopes F V, Moreira R F, Grande C A, Rodrigues A E. Adsorption of CO2, CH4, and N2 in activated carbon honeycomb monolith[J]. J. Chem. Eng. Data, 2008, 53: 2311-2317
|