化工学报 ›› 2016, Vol. 67 ›› Issue (1): 14-26.DOI: 10.11949/j.issn.0438-1157.20151468
徐骥, 卢利强, 葛蔚, 李静海
收稿日期:
2015-09-18
修回日期:
2015-11-30
出版日期:
2016-01-05
发布日期:
2016-01-05
通讯作者:
葛蔚
XU Ji, LU Liqiang, GE Wei, LI Jinghai
Received:
2015-09-18
Revised:
2015-11-30
Online:
2016-01-05
Published:
2016-01-05
摘要:
化工过程通常涉及化学、化工、过程系统工程3个层次,而每个层次又包含微尺度、介尺度和宏尺度,如化工层次的颗粒、颗粒团和反应器尺度。每个层次中的微尺度单元都自然适用离散模型,即通过跟踪每个单元的运动获得整个体系演化的宏观规律。但由于单元数量巨大,工程模拟往往依赖经过统计平均的连续介质模型。由此带来的精度问题,特别是忽略了介尺度结构的问题,随着对化工过程效率和绿色度等要求的提高而日渐突出。介绍了通过问题、模型、软件和硬件结构的一致性提升离散模拟的精度、能力和效率的方法、进展及其在复杂分子体系、颗粒流、气固流态化等方面的应用,展示了通过离散模拟实现虚拟过程工程的可能性。
中图分类号:
徐骥, 卢利强, 葛蔚, 李静海. 基于EMMS范式的离散模拟及其化工应用[J]. 化工学报, 2016, 67(1): 14-26.
XU Ji, LU Liqiang, GE Wei, LI Jinghai. Discrete simulation based on EMMS paradigm and its applications in chemical engineering[J]. CIESC Journal, 2016, 67(1): 14-26.
[1] | LI J H, GE W, KWAUK M. Meso-scale phenomena from compromise—a common challenge, not only for chemical engineering [J/OL]. http://arxiv.org/abs/0912.5407. |
[2] | GE W, WANG W, YANG N, et al. Meso-scale oriented simulation towards virtual process engineering (VPE)—the EMMS Paradigm [J]. Chemical Engineering Science, 2011, 66(19): 4426-4458. |
[3] | 李静海, 黄文来. 探索介科学:竞争中的协调原理[M]. 北京: 科学出版社, 2014.LI J H, HUANG W L. Towards Mesoscience: the Principle of Compromise in Competition[M]. Beijing: Science Press, 2014. |
[4] | LI J H, HUANG W L. Towards Mesoscience: the Principle of Compromise in Competition[M]. Berlin: Springer, 2014. |
[5] | LI J H, TUNG Y, KWAUK M. Method of energy minimization in multi-scale modeling of particle-fluid two-phase flow[M]//BASU P, LARGE J F. Circulating Fluidized Bed Technology. Pergamon, 1988: 89-103. |
[6] | 李静海. 两相流多尺度作用模型和能量最小方法[D]. 北京: 中国科学院化工冶金研究所, 1987.LI J H. Multi-scale modeling and method of energy minimization in two-phase flow [D]. Beijing: Institute of Chemical Metallurgy, Chinese Academy of Sciences, 1987. |
[7] | LI J H, ZHANG J Y, GE W, et al. A simple variational criterion for turbulent flow in pipe [J]. Chemical Engineering Science, 1999, 54(8): 1151-1154. |
[8] | GE W, CHEN F G, GAO J, et al. Analytical multi-scale method for multi-phase complex systems in process engineering—bridging reductionism and holism [J]. Chemical Engineering Science, 2007, 62(13): 3346-3377. |
[9] | LI J H, GE W, WANG W, et al. Focusing on the meso-scales of multi-scale phenomena—in search for a new paradigm in chemical engineering [J]. Particuology, 2010, 8(6): 634-639. |
[10] | GE W, LI J H. Pseudo-particle approach to hydrodynamics of gas/solid two-phase flow[C]//Proceedings of the 5th International Conference on Circulating Fluidized Bed. Beijing: Science Press, 1996: 260-265. |
[11] | GE W, LI J H. Macro-scale phenomena reproduced in microscopic systems—pseudo-particle modeling of fluidization [J]. Chemical Engineering Science, 2003, 58(8): 1565-1585. |
[12] | GE W, LI J H. Simulation of particle-fluid systems with macro-scale pseudo-particle modeling [J]. Powder Technology, 2003, 137(1/2): 99-108. |
[13] | GE W, LI J H. Conceptual model for massive parallel computing of discrete systems with local interactions [J]. Computers and Applied Chemistry, 2000, 17(5): 385-388. |
[14] | GE W, MA J S, ZHANG J Y, et al. Particle methods for multiscale simulation of complex flows [J]. Chinese Science Bulletin, 2005, 50(11): 1057-1069. |
[15] | 唐德祥. 粒子模拟并行计算通用平台的设计与初步应用[D]. 北京: 中国科学院过程工程研究所, 2005.TANG D X. A general method of parallel computation for particle methods and its preliminary applications[D]. Beijing: Institue of Process Engineering, Chinese Academy of Sciences, 2005. |
[16] | ALDER B J, WAINWRIGHT T E. Molecular Dynamics by Electronic Computers[M]. New York: Wiley, 1956. |
[17] | CUNDALL P A, STRACK O D L. A discrete numerical-model for granular assemblies [J]. Geotechnique, 1979, 29(1): 47-65. |
[18] | HOOGERBRUGGE P J, KOELMAN J. Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics [J]. EPL (Europhysics Letters), 1992, 19(3): 155-160. |
[19] | BIRD G A. Approach to translational equilibrium in a rigid sphere gas [J]. Physics of Fluids, 1963, 6(10): 1518-1519. |
[20] | TSUJI Y, TANAKA T, ISHIDA T. Lagrangian numerical-simulation of plug flow of cohesionless particles in a horizontal pipe [J]. Powder Technology, 1992, 71(3): 239-250. |
[21] | LU L Q, XU J, GE W, et al. EMMS-based discrete particle method (EMMS-DPM) for simulation of gas-solid flows [J]. Chemical Engineering Science, 2014, 120: 67-87. |
[22] | ANDREWS M J, OROURKE P J. The multiphase particle-in-cell (MP-PIC) method for dense particulate flows [J]. International Journal of Multiphase Flow, 1996, 22(2): 379-402. |
[23] | GE W, LU L Q, LIU S W, et al. Multiscale discrete supercomputing-a game changer for process simulation? [J]. Chemical Engineering & Technology, 2015, 38(4): 575-584. |
[24] | XU J, REN Y, GE W, et al. Molecular dynamics simulation of macromolecules using graphics processing unit [J]. Molecular Simulation, 2010, 36(14): 1131-1140. |
[25] | XU J, HAN M Z, REN Y, et al. The principle of compromise in competition: exploring stability condition of protein folding [J]. Science Bulletin, 2015, 60(1): 76-85. |
[26] | PERUTZ M. Electrostatic effects in proteins [J]. Science, 1978, 201(4362): 1187-1191. |
[27] | PLIMPTON S. Fast parallel algorithms for short-range molecular dynamics [J]. Journal of Computational Physics, 1995, 117(1): 1-19. |
[28] | GE W, LI J H. General approach for discrete simulation of complex systems [J]. Chinese Science Bulletin, 2002, 47(14): 1172-1175. |
[29] | 王小伟. 可叠加近程作用粒子系统模拟的并行计算框架及通用化研究[D]. 北京: 中国科学院过程工程研究所, 2008.WANG X W. A framework for parallel simulation of particle systems with pair-additive local interactions — toward a general approach[D]. Beijing: Institute of Process Engineering, Chinese Academy of Sciences, 2008. |
[30] | RYCKAERT J-P, CICCOTTI G, BERENDSEN H J C. Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes [J]. Journal of Computational Physics, 1977, 23(3): 327-341. |
[31] | HESS B, BEKKER H, BERENDSEN H J C, et al. LINCS: a linear constraint solver for molecular simulations [J]. Journal of Computational Chemistry, 1997, 18(12): 1463-1472. |
[32] | DARDEN T, YORK D, PEDERSEN L. Particle mesh Ewald: an N·log(N) method for Ewald sums in large systems [J]. The Journal of Chemical Physics, 1993, 98(12): 10089-10092. |
[33] | ESSMANN U, PERERA L, BERKOWITZ M, et al. A smooth particle mesh Ewald method [J]. The Journal of Chemical Physics, 1995, 103(19): 8577-8593. |
[34] | LENNARD-JONES J E. Cohesion [J]. Proceedings of the Physical Society, 1931, 43(5): 461-482. |
[35] | HERTZ H. Miscellaneous Papers [M]. JONES D E, SCHOTT G A, trans. London, UK: Macmillan, 1896. |
[36] | LI B, ZHOU G Z, GE W, et al. A multi-scale architecture for multi-scale simulation and its application to gas-solid flows [J]. Particuology, 2014, 15(0): 160-169. |
[37] | WANG X W, GE W. The Mole-8.5 Supercomputing System[M]. Chapman & Hall/CRC, 2013. |
[38] | WANG X W, GE W, HE X F, et al. Development and application of a HPC system for multi-scale discrete simulation-Mole-8.5[C]//International Supercomputing Conference. Germany, 2010. |
[39] | GE W, XU J, XIONG Q G, et al. Multi-scale Continuum-Particle Simulation on CPU-GPU Hybrid Supercomputer[M]. Heidelberg, Berlin: Springer, 2013. |
[40] | Intel. Molecular dynamics optimization on Intel® many integrated core archi-tecture (Intel® MIC)[OL]. 2013. http://software. intel.com/en-us/articles/molecular-dynamics-optimization-on-intel-many-integrated-core-architecture-intel-mic |
[41] | NVIDIA CUDA. Compute Unified Device Architecture-CUDA Programming Guide.[M]. Santa Clara, CA: 2006. |
[42] | HOU C F, XU J, WANG P, et al. Petascale molecular dynamics simulation of crystalline silicon on Tianhe-1A [J]. International Journal of High Performance Computing Applications, 2013, 27(3): 307-317. |
[43] | 徐骥. GPU加速度的大分子体系分子动力学方法——实现与应用[D]. 北京: 中国科学院过程工程研究所, 2012.XU J. GPU accelerated MD simulation for macromolecular systems[D]. Beijing: Institute of Process Engineering, Chinese Academy of Sciences, 2012. |
[44] | QI H B, XU J, ZHOU G Z, et al. Numerical investigation of granular flow similarity in rotating drums [J]. Particuology, 2015, 22(0): 119-127. |
[45] | DI S B, GE W. Simulation of dynamic fluid-solid interactions with an improved direct-forcing immersed boundary method [J]. Particuology, 2015, 18: 22-34. |
[46] | XU J, QI H B, FANG X J, et al. Quasi-real-time simulation of rotating drum using discrete element method with parallel GPU computing [J]. Particuology, 2011, 9(4): 446-450. |
[47] | XIONG Q G, LI B, ZHOU G Z, et al. Large-scale DNS of gas-solid flows on Mole-8.5 [J]. Chemical Engineering Science, 2012, 71: 422-430. |
[48] | XIONG Q G, LI B, XU J. GPU-accelerated adaptive particle splitting and merging in SPH [J]. Computer Physics Communications, 2013, 184(7): 1701-1707. |
[49] | KRUGGEL-EMDEN H, RICKELT S, WIRTZ S, et al. A study on the validity of the multi-sphere Discrete Element Method [J]. Powder Technology, 2008, 188(2): 153-165. |
[50] | 戚华彪. 基于GPU的离散模拟在颗粒流动与混合机理研究中的应用[D]. 北京: 中国科学院过程工程研究所, 2014.QI H B. Application of GPU-based discrete simulation to the study of flow and mixing mechanisms of granular materials[D]. Beijing: University of Chinese Academy of Sciences, 2014. |
[51] | XU J, REN Y, GE W, et al. Mole-MD V1.0[CP]. 2010SRBJ0465, Chinese Software register, 2010. |
[52] | XU J, QI H B, GE W, et al. DEMMS V2.0[CP]. 2013SRBJ0125, Chinese Software register, 2013. |
[53] | XU J, QI H B, GE W, et al. DEMMS V3.0[CP]. 2014SRBJ0786, Chinese Software register, 2014. |
[54] | XU J, WANG X W, HE X F, et al. Application of the Mole-8.5 supercomputer: probing the whole influenza virion at the atomic level [J]. Chinese Science Bulletin, 2011, 56(20): 2114-2118. |
[55] | REN X X, XU J, QI H B, et al. GPU-based discrete element simulation on a tote blender for performance improvement [J]. Powder Technology, 2013, 239: 348-357. |
[56] | YUAN F-W, TUAN H-Y. Supercritical fluid-solid growth of single-crystalline silicon nanowires: an example of metal-free growth in an organic solvent [J]. Crystal Growth & Design, 2010, 10(11): 4741-4745. |
[57] | GUO Y, CURTIS J S. Discrete element method simulations for complex granular flows [J]. Annual Review of Fluid Mechanics, 2015, 47(1): 21-46. |
[58] | LACEY P M C. Developments in the theory of particle mixing [J]. Journal of Applied Chemistry, 1954, 4(5): 257-268. |
[59] | LEVENSPIEL O. Chemical Reaction Engineering[M]. New York: Wiley, 1998. |
[60] | VARGAS-ESCOBAR W L. Discrete Modeling of Heat Conduction in Granular Media[M]. Pittsburgh: University of Pittsburgh, 2002. |
[61] | WANG L M, ZHOU G Z, WANG X W, et al. Direct numerical simulation of particle-fluid systems by combining time-driven hard-sphere model and lattice Boltzmann method [J]. Particuology, 2010, 8(4): 379-382. |
[62] | XIONG Q G, LI B, CHEN F G, et al. Direct numerical simulation of sub-grid structures in gas-solid flow—GPU implementation of macro-scale pseudo-particle modeling [J]. Chemical Engineering Science, 2010, 65(19): 5356-5365. |
[63] | LADD A J C. Numerical simulations of particulate suspensions via a discretized Boltzmann equation(Ⅰ): Theoretical foundation [J]. Journal of Fluid Mechanics, 1994, 271: 285-309. |
[64] | 狄升斌. 基于浸入边界法的复杂流动多尺度模拟[D]. 北京:中国科学院大学, 2015.DI S B. Multi-scale modeling and numerical simulation of complex flows based on immersed boundary method[D]. Beijing: University of Chinese Academy of Sciences, 2015. |
[65] | DEEN N G, KRIEBITZSCH S H L, VAN DER HOEF M A, et al. Direct numerical simulation of flow and heat transfer in dense fluid-particle systems [J]. Chemical Engineering Science, 2012, 81: 329-344. |
[66] | MA J S, GE W, WANG X W, et al. High-resolution simulation of gas-solid suspension using macro-scale particle methods [J]. Chemical Engineering Science, 2006, 61(21): 7096-7106. |
[67] | MA J S, GE W, XIONG Q G, et al. Direct numerical simulation of particle clustering in gas-solid flow with a macro-scale particle method [J]. Chemical Engineering Science, 2009, 64(1): 43-51. |
[68] | PESKIN C S. Flow patterns around heart valves: a numerical method [J]. Journal of Computational Physics, 1972, 10(2): 252-271. |
[69] | SMAGORINSKY J. General circulation experiments with the primitive equations [J]. Monthly Weather Review, 1963, 91(3): 99-164. |
[70] | GIDASPOW D. Multiphase Flow and Fluidization: Continuum and Kinetic Theory Description[M]. New York: Academic Press, 1994. |
[71] | ANDERSON T B, JACKSON R. Fluid mechanical description of fluidized beds. Equations of motion [J]. Industrial & Engineering Chemistry Fundamentals, 1967, 6(4): 527-539. |
[72] | XU M, CHEN F G, LIU X H, et al. Discrete particle simulation of gas-solid two-phase flows with multi-scale CPU-GPU hybrid computation [J]. Chemical Engineering Journal, 2012, 207: 746-757. |
[73] | XU M, GE W, LI J H. A discrete particle model for particle-fluid flow with considerations of sub-grid structures [J]. Chemical Engineering Science, 2007, 62(8): 2302-2308. |
[74] | XU B H, YU A B. Numerical simulation of the gas-solid flow in a fluidized bed by combining discrete particle method with computational fluid dynamics [J]. Chemical Engineering Science, 1997, 52(16): 2785-2809. |
[75] | SYAMLAL M, PANNALA S. Multiphase Continuum Formulation for Gas-Solids Reacting Flows[M]. Hershey, New York: Engineering Science Reference, 2011. |
[76] | KUNII D, LEVENSPIEL O. Fluidization Engineering[M]. 2nd ed. Stoneham, MA (United States): Butterworth Publishers, 1991. |
[77] | LIU X H, GUO L, XIA Z J, et al. Harnessing the power of virtual reality [J]. Chemical Engineering Progress, 2012, (7): 28-32. |
[78] | XU J, LI X X, HOU C F, et al. Engineering molecular dynamics simulation in chemical engineering [J]. Chemical Engineering Science, 2015, 121: 200-216. |
[79] | CHEN W C, GAO Y. The effect of reducing coal slurry particle size on operation of multi-nozzle oppositely placed coal-water slurry gasification system [J]. Chemical Fertilizer Industry, 2015, 42(2): 36-38. |
[80] | SAKAI M, KOSHIZUKA S. Large-scale discrete element modeling in pneumatic conveying [J]. Chemical Engineering Science, 2009, 64(3): 533-539. |
[81] | SHAW D E, DENEROFF M M, DROR R O, et al. Anton, a special-purpose machine for molecular dynamics simulation [J]. SIGARCH Comput. Archit. News, 2007, 35(2): 1-12. |
[82] | SHAW D E, GROSSMAN J P, BANK J A, et al. Anton 2: raising the bar for performance and programmability in a special-purpose molecular dynamics supercomputer[C]//Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis (SC14). Piscataway, NJ, USA: IEEE Press, 2014: 41-53 |
[1] | 宋瑞涛, 王派, 王云鹏, 李敏霞, 党超镔, 陈振国, 童欢, 周佳琦. 二氧化碳直接蒸发冰场排管内流动沸腾换热数值模拟分析[J]. 化工学报, 2023, 74(S1): 96-103. |
[2] | 曾如宾, 沈中杰, 梁钦锋, 许建良, 代正华, 刘海峰. 基于分子动力学模拟的Fe2O3纳米颗粒烧结机制研究[J]. 化工学报, 2023, 74(8): 3353-3365. |
[3] | 郑玉圆, 葛志伟, 韩翔宇, 王亮, 陈海生. 中高温钙基材料热化学储热的研究进展与展望[J]. 化工学报, 2023, 74(8): 3171-3192. |
[4] | 杨越, 张丹, 郑巨淦, 涂茂萍, 杨庆忠. NaCl水溶液喷射闪蒸-掺混蒸发的实验研究[J]. 化工学报, 2023, 74(8): 3279-3291. |
[5] | 董明, 徐进良, 刘广林. 超临界水非均质特性分子动力学研究[J]. 化工学报, 2023, 74(7): 2836-2847. |
[6] | 张孟斌, 李锐, 张嘉杰, 马素霞, 张建胜. 基于共面电容原理的煤炭灰渣介电特性实验研究[J]. 化工学报, 2023, 74(7): 3028-3037. |
[7] | 史昊鹏, 钟达文, 廉学新, 张君峰. 朝下多尺度沟槽翅片结构表面沸腾换热实验研究[J]. 化工学报, 2023, 74(7): 2880-2888. |
[8] | 李艳辉, 丁邵明, 白周央, 张一楠, 于智红, 邢利梅, 高鹏飞, 王永贞. 非常规服役超临界锅炉的微纳尺度腐蚀动力学模型建立及应用[J]. 化工学报, 2023, 74(6): 2436-2446. |
[9] | 郑志航, 马郡男, 闫子涵, 卢春喜. 提升管射流影响区内压力脉动特性研究[J]. 化工学报, 2023, 74(6): 2335-2350. |
[10] | 陈巨辉, 张谦, 舒崚峰, 李丹, 徐鑫, 刘晓刚, 赵晨希, 曹希峰. 基于DEM方法的旋转流化床纳米颗粒流动特性研究[J]. 化工学报, 2023, 74(6): 2374-2381. |
[11] | 时国华, 何林珅, 赵玺灵, 张世钢. 余热回收喷淋塔的烟气颗粒物脱除特性研究[J]. 化工学报, 2023, 74(4): 1735-1745. |
[12] | 李新亚, 邢雷, 蒋明虎, 赵立新. 倒锥注气强化井下油水分离水力旋流器性能研究[J]. 化工学报, 2023, 74(3): 1134-1144. |
[13] | 颜少航, 赖天伟, 王彦武, 侯予, 陈双涛. 微间隙内R134a空化可视化实验研究[J]. 化工学报, 2023, 74(3): 1054-1061. |
[14] | 陈俊先, 姬忠礼, 赵瑜, 张倩, 周岩, 刘猛, 刘震. 基于微波技术的天然气管道内颗粒物在线检测方法研究[J]. 化工学报, 2023, 74(3): 1042-1053. |
[15] | 贾龙菲, 付少童, 向星, 张华海, 张弢, 王利民. 颗粒振动影响动量传递过程的格子Boltzmann方法模拟[J]. 化工学报, 2023, 74(2): 735-747. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||