[1] |
GUAN W, FAN R, REED M A. Field-effect reconfigurable nanofluidic ionic diodes[J]. Nature Communications, 2011, 2(2): 506.
|
[2] |
JAIN T, GUERRERO R J S, AGUILAR C A, et al. Integration of solid-state nanopores in microfluidic networks via transfer printing of suspended membranes[J]. Analytical Chemistry, 2013, 85(8): 3871-3878.
|
[3] |
DAVIDSON C, XUAN X. Electrokinetic energy conversion in slip nanochannels[J]. Journal of Power Sources, 2008, 179(1): 297-300.
|
[4] |
EIJKEL J C T, BERG A V D. Nanofluidics: what is it and what can we expect from it?[J]. Microfluidics and Nanofluidics, 2005, 1(3): 249-267.
|
[5] |
ZHU Y, ZHANG Y, SHI Y, et al. Lubrication behavior of water molecules confined in TiO2 nanoslits: a molecular dynamics study[J]. Journal of Chemical & Engineering Data, 2016, 61(12): 4023-4030.
|
[6] |
赵梦尧, 杨雪平, 杨晓宁. 石墨烯狭缝受限孔道中水分子的分子动力学模拟[J]. 物理化学学报, 2015, 31(8): 1489-1498. ZHAO M Y, YANG X P, YANG X N. Molecular dynamics simulation of water molecule in confined graphene silt[J]. Acta Physico-Chimica Sinica, 2015, 31(8): 1489-1498.
|
[7] |
WEI M J, ZHANG L, LU L, et al. Molecular behavior of water in TiO2 nano-slits with varying coverages of carbon: a molecular dynamics simulation study[J]. Physical Chemistry Chemical Physics, 2012, 14(48): 16536-16543.
|
[8] |
ALGARA-SILLER G, LEHTINEN O, WANG F C, et al. Square ice in graphene nanocapillaries[J]. Nature, 2015, 519(7544): 443-445.
|
[9] |
NAIR R R, WU H A, JAYARAM P N, et al. Unimpeded permeation of water through helium-leak-tight graphene-based membranes[J]. Science, 2012, 335(6067): 442-444.
|
[10] |
JOSHI R, CARBONE P, WANG F C, et al. Precise and ultrafast molecular sieving through graphene oxide membranes[J]. Science, 2014, 343(6172): 752-754.
|
[11] |
HUANG H, SONG Z, WEI N, et al. Ultrafast viscous water flow through nanostrand-channelled graphene oxide membranes[J]. Nature Communications, 2013, 4(4): 2979.
|
[12] |
YANG X, YANG X, LIU S. Molecular dynamics simulation of water transport through graphene-based nanopores: flow behavior and structure characteristics[J]. Chinese Journal of Chemical Engineering, 2015, 23(10): 1587-1592.
|
[13] |
YANG X, DAI H, XU Z. Water permeation and ion rejection in layer-by-layer stacked graphene oxide nanochannels: a molecule dynamic simulation[J]. The Journal of Physical Chemistry C, 2016, 120(39): 22585-22596.
|
[14] |
KARNIADAKIS G E, BESKOK A, ALURU N. Microflows and Nanoflows: Fundamentals and Simulation[M]. Berlin: Springer Science & Business Media, 2006.
|
[15] |
TRAVIS K P, TODD B, EVANS D J. Departure from Navier-Stokes hydrodynamics in confined liquids[J]. Physical Review E, 1997, 55(4): 4288.
|
[16] |
BO?AN A, ROTENBERG B, MARRY V, et al. Hydrodynamics in clay nanopores[J]. The Journal of Physical Chemistry C, 2011, 115(32): 16109-16115.
|
[17] |
SENDNER C, HORINEK D, BOCQUET L, et al. Interfacial water at hydrophobic and hydrophilic surfaces: slip, viscosity, and diffusion[J]. Langmuir, 2009, 25(18): 10768-10781.
|
[18] |
HUANG D M, COTTIN-BIZONNE C, YBERT C, et al. Aqueous electrolytes near hydrophobic surfaces: dynamic effects of ion specificity and hydrodynamic slip[J]. Langmuir, 2008, 24(4): 1442-1450.
|
[19] |
LIU B, WU R, BAIMOVA J A, et al. Molecular dynamics study of pressure-driven water transport through graphene bilayers[J]. Physical Chemistry Chemical Physics, 2016, 18(3): 1886-1896.
|
[20] |
HO T A, STRIOLO A. Molecular dynamics simulation of the graphene-water interface: comparing water models[J]. Molecular Simulation, 2014, 40(14): 1190-1200.
|
[21] |
BERENDSEN H J C, GRIGERA J R, STRAATSMA T P. The missing term in effective pair potentials[J]. The Journal of Physical Chemistry, 1987, 91(24): 6269-6271.
|
[22] |
HUMMER G, RASAIAH J C, NOWORYTA J P. Water conduction through the hydrophobic channel of a carbon nanotube[J]. Nature, 2001, 414(6860): 188-190.
|
[23] |
KALÉ L, SKEEL R, BHANDARKAR M, et al. NAMD2: greater scalability for parallel molecular dynamics[J]. Journal of Computational Physics, 1999, 151(1): 283-312.
|
[24] |
DARDEN T, YORK D, PEDERSEN L. Particle mesh Ewald: an N-log(N) method for Ewald sums in large systems[J]. The Journal of Chemical Physics, 1993, 98(12): 10089-10092.
|
[25] |
MA M, GREY F, SHEN L, et al. Water transport inside carbon nanotubes mediated by phonon-induced oscillating friction[J]. Nat. Nano, 2015, 10(8): 692-695.
|
[26] |
BERNARDI S, TODD B D, SEARLES D J. Thermostating highly confined fluids[J]. The Journal of Chemical Physics, 2010, 132(24): 244706.
|
[27] |
DASILVA L B. Structural and dynamical properties of water confined in carbon nanotubes[J]. Journal of Nanostructure in Chemistry, 2014, 4(2): 1-5.
|
[28] |
NAKAMURA Y, OHNO T. Structure of water confined inside carbon nanotubes and water models[J]. Materials Chemistry and Physics, 2012, 132(2/3): 682-687.
|
[29] |
THOMAS J A, MCGAUGHEY A J. Water flow in carbon nanotubes: transition to subcontinuum transport[J]. Physical Review Letters, 2009, 102(18): 184502.
|
[30] |
陈其乐, 孔宪, 卢滇楠, 等. 外壁荷电性质对双壁碳纳米管中水分子运动行为的影响[J]. 化工学报, 2014, 65(1): 319-27. CHEN Q L, KONG X, LU D N, et al. Effect of charge properties of outer wall on the motion of water molecules in double-walled carbon nanotubes[J]. CIESC Journal, 2014, 65(1): 319-327.
|