[1] |
Dalili N, Edrisy A, Carriveau R. A review of surface engineering issues critical to wind turbine performance[J]. Renewable & Sustainable Energy Reviews, 2009, 13(2): 428-438.
|
[2] |
Chen L, Xiao Z, Chan P C H, et al. A comparative study of droplet impact dynamics on a dual-scaled superhydrophobic surface and lotus leaf[J]. Applied Surface Science, 2011, 257(21): 8857-8863.
|
[3] |
Raza M A, Van Swigchem J, Jansen H P, et al. Droplet impact on hydrophobic surfaces with hierarchical roughness[J]. Surface Topography Metrology & Properties, 2014, 2(2): 035002.
|
[4] |
Lv C, Hao P, Zhang X, et al. Drop impact upon superhydrophobic surfaces with regular and hierarchical roughness[J]. Applied Physics Letters, 2016, 108(14): 141602.
|
[5] |
Hao P F, Cunjing L V, Niu F L, et al. Water droplet impact on superhydrophobic surfaces with microstructures and hierarchical roughness[J]. Science China Physics Mechanics & Astronomy, 2014, 57(7): 1376-1381.
|
[6] |
Leclear S, Leclear J, Abhijeet, et al. Drop impact on inclined superhydrophobic surfaces[J]. Journal of Colloid & Interface Science, 2015, 461: 114-121.
|
[7] |
Yeong Y H, Burton J, Loth E, et al. Drop impact and rebound dynamics on an inclined superhydrophobic surface[J]. Langmuir, 2014, 30(40): 12027-12038.
|
[8] |
Liang G, Guo Y, Shen S, et al. A study of a single liquid drop impact on inclined wetted surfaces[J]. Acta Mechanica, 2014, 225(12): 3353-3363.
|
[9] |
Li X, Ma X, Lan Z. Dynamic behavior of the water droplet impact on a textured hydrophobic/superhydrophobic surface: the effect of the remaining liquid film arising on the Pillars'tops on the contact time[J]. Langmuir, 2010, 26(26): 4831-4838.
|
[10] |
LEE J B, LEE S H. Dynamic wetting and spreading characteristics of a liquid droplet impinging on hydrophobic textured surfaces[J]. Langmuir, 2011, 27(11): 6565-6573.
|
[11] |
Kannan R, Sivakumar D. Drop impact process on a hydrophobic grooved surface[J]. Colloids & Surfaces A, Physicochemical & Engineering Aspects, 2008, 317(1/2/3): 694-704.
|
[12] |
Patil N D, Bhardwaj R, Sharma A. Droplet impact dynamics on micropillared hydrophobic surfaces[J]. Experimental Thermal & Fluid Science, 2016, 74: 195-206.
|
[13] |
Tsai P, Pacheco S, Pirat C, et al. Drop impact upon micro-and nanostructured superhydrophobic surfaces[J]. Langmuir, 2009, 25(20): 12293-12298.
|
[14] |
Pittoni P G, Lin Y C, Lin S Y. The impalement of water drops impinging onto hydrophobic/superhydrophobic graphite surfaces: the role of dynamic pressure, hammer pressure and liquid penetration time[J]. Applied Surface Science, 2014, 301(10): 515-524.
|
[15] |
Khedir K R, Kannarpady G K, Ishihara H, et al. Temperature-dependent bouncing of super-cooled water on teflon-coated superhydrophobic tungsten nanorods[J]. Applied Surface Science, 2013, 279(32): 76-84.
|
[16] |
Maitra T, Antonini C, Tiwari M K, et al. Supercooled water drops impacting superhydrophobic textures[J]. Langmuir, 2014, 30(36): 10855-10861.
|
[17] |
Wang Z, Lopez C, Hirsa A, et al. Impact dynamics and rebound of water droplets on superhydrophobic carbon nanotube arrays[J]. Applied Physics Letters, 2007, 91(2): 023105.
|
[18] |
杨宝海, 王宏, 朱恂, 等. 速度对液滴撞击超疏水壁面行为特性的影响[J]. 化工学报, 2012, 63(10): 3027-3033.
|
|
YANG B H, WANG H, ZHU X, et al. Effect of velocity oil behavior of droplet impacting superhydrophobic surface[J]. CIESC Journal, 2012, 63(10): 3027-3033.
|
[19] |
刘冬薇, 宁智, 吕明, 等. 液滴撞击超疏水壁面反弹及破碎行为研究[J]. 计算力学学报, 2016, 33(1): 106-112.
|
|
LIU D W, NING Z, LÜ M, et al. Rebound and splash behaviors of droplet impacting on superhydrophobic surfaces[J]. Chinese Journal of Computational Mechanics, 2016, 33(1): 106-112.
|
[20] |
Bange P G, Bhardwaj R. Computational study of bouncing and non-bouncing droplets impacting on superhydrophobic surfaces[J]. Theoretical and Computational Fluid Dynamics, 2016, 30(3): 1-25.
|
[21] |
Lee C, Nam Y, Lastakowski H, et al. Two types of Cassie-to-Wenzel wetting transitions on superhydrophobic surfaces during drop impact[J]. Soft Matter, 2015, 11(23): 4592-4599.
|
[22] |
Patil N D, Gada V H, Sharma A, et al. On dual-grid level-set method for contact line modeling during impact of a droplet on hydrophobic and superhydrophobic surfaces[J]. International Journal of Multiphase Flow, 2016, 81: 54-66.
|
[23] |
XU Q, Li Z Y, Wang J, et al. Characteristics of single droplet impact on cold plate surfaces[J]. Drying Technology, 2012, 30(15): 1756-1762.
|
[24] |
Jin Z, Wang Z, Sui D, et al. The impact and freezing processes of a water droplet on different inclined cold surfaces[J]. International Journal of Heat & Mass Transfer, 2016, 97: 211-223.
|
[25] |
Jin Z, Sui D, Yang Z. The impact, freezing, and melting processes of a water droplet on an inclined cold surface[J]. International Journal of Heat & Mass Transfer, 2015, 90: 439-453.
|
[26] |
Li H, Roisman I V, Tropea C. Influence of solidification on the impact of supercooled water drops onto cold surfaces[J]. Experiments in Fluids, 2015, 56(6): 1-13.
|
[27] |
Wang Y, Xue J, Wang Q, et al. Verification of icephobic/anti-icing properties of a superhydrophobic surface[J]. ACS Applied Materials & Interfaces, 2013, 5(8): 3370-3381.
|
[28] |
Mishchenko L, Hatton B, Bahadur V, et al. Design of ice-free nanostructured surfaces based on repulsion of impacting water droplets[J]. ACS Nano, 2010, 4(12): 7699-7707.
|
[29] |
Bahadur V, Mishchenko L, Hatton B, et al. Predictive model for ice formation on superhydrophobic surfaces[J]. Langmuir, 2011, 27(23): 14143-14150.
|
[30] |
Chen Y, Fu Y, Huang J, et al. Droplet bouncing on hierarchical branched nanotube arrays above and below the freezing temperature[J]. Applied Surface Science, 2016, 375: 127-135.
|
[31] |
WANG H, HE G, TIAN Q. Effects of nano-fluorocarbon coating on icing[J]. Applied Surface Science, 2012, 258(18): 7219-7224.
|