化工学报 ›› 2018, Vol. 69 ›› Issue (1): 156-165.DOI: 10.11949/j.issn.0438-1157.20171214
张麟, 孙彦
收稿日期:
2017-09-05
修回日期:
2017-10-24
出版日期:
2018-01-05
发布日期:
2018-01-05
通讯作者:
孙彦
基金资助:
国家自然科学基金项目(21236005,21376173,91534119,21621004);天津大学自主创新基金。
ZHANG Lin, SUN Yan
Received:
2017-09-05
Revised:
2017-10-24
Online:
2018-01-05
Published:
2018-01-05
Contact:
10.11949/j.issn.0438-1157.20171214
Supported by:
supported by the National Natural Science Foundation of China (21236005, 21376173, 91534119, 21621004) and the Innovation Foundation of Tianjin University.
摘要:
蛋白质色谱界面行为解析对实现以高吸附容量、高活性收率和高传质速率为特征的高效色谱具有重要意义。利用分子模拟技术在微观过程展示方面的独特优势解析色谱界面过程已经广泛开展。本文综述色谱界面上蛋白质的取向、构象转换以及传质过程的分子模拟研究工作。首先,概述色谱界面上蛋白质取向研究,总结取向的成因和调控因素,探讨通过蛋白质取向调控实现高吸附容量。其次,概述色谱界面上蛋白质构象转换,尤其是变性现象的分子模拟研究,以通过色谱条件优化获得高活性收率。最后,阐述色谱介质表面传质过程研究及现存问题。本文以高吸附容量、高活性收率和高传质速率为目标,总结其对应微观过程的分子模拟解析,服务于色谱表面优化设计以实现高效色谱。
中图分类号:
张麟, 孙彦. 蛋白质色谱界面行为的分子模拟[J]. 化工学报, 2018, 69(1): 156-165.
ZHANG Lin, SUN Yan. Molecular simulation on interfacial behaviors of protein at chromatographic surfa[J]. CIESC Journal, 2018, 69(1): 156-165.
[1] | YU L L, ZHANG L, SUN Y. Protein behavior at surfaces:orientation, conformational transitions and transport[J]. Journal of Chromatography A, 2015, 1382:118-134. |
[2] | SUN Y, SHI Q H, ZHANG L, et al. Adsorption and Chromatography[M]. 2nd ed. Elsevier, 2011:665-679. |
[3] | ZHANG L, SUN Y. Molecular simulation of adsorption and its implications to protein chromatography:a review[J]. Biochemical Engineering Journal, 2010, 48(3):408-415. |
[4] | HANKE A T, OTTENS M. Purifying biopharmaceuticals:knowledge-based chromatographic process development[J]. Trends in Biotechnology, 2014, 32(4):210-220. |
[5] | YANO Y F. Kinetics of protein unfolding at interfaces[J]. Journal of Physics-Condensed Matter, 2012, 24(50310150):16. |
[6] | KARPLUS M. Molecular dynamics of biological macromolecules:a brief history and perspective[J]. Biopolymers, 2003, 68(3):350-358. |
[7] | KARPLUS M, MCCAMMON J A. Molecular dynamics simulations of biomolecules[J]. Nature Structural Biology, 2002, 9(9):646-652. |
[8] | BRATKO D, CELLMER T, PRAUSNITZ J M, et al. Molecular simulation of protein aggregation[J]. Biotechnology and Bioengineering, 2007, 96(1):1-8. |
[9] | EUSTON S R. Computer simulation of proteins:adsorption, gelation and self-association[J]. Current Opinion in Colloid & Interface Science, 2004, 9(5):321-327. |
[10] | OZBOYACI M, KOKH D B, CORNI S, et al. Modeling and simulation of protein-surface interactions:achievements and challenges[J]. Quarterly Reviews of Biophysics, 2016, 49:1-45. |
[11] | RABE M, VERDES D, SEEGER S. Understanding protein adsorption phenomena at solid surfaces[J]. Advances in Colloid and Interface Science, 2011, 162(1/2):87-106. |
[12] | DISMER F, PETZOLD M, HUBBUCH J. Effects of ionic strength and mobile phase pH on the binding orientation of lysozyme on different ion-exchange adsorbents[J]. Journal of Chromatography A, 2008, 1194(1):11-21. |
[13] | DISMER F, HUBBUCH J. 3D structure-based protein retention prediction for ion-exchange chromatography[J]. Journal of Chromatography A, 2010, 1217(8):1343-1353. |
[14] | DISMER F, HUBBUCH J. A novel approach to characterize the binding orientation of lysozyme on ion-exchange resins[J]. Journal of Chromatography A, 2007, 1149(2):312-320. |
[15] | STEUDLE A, PLEISS J. Modelling of lysozyme binding to a cation exchange surface at atomic detail:the role of flexibility[J]. Biophysical Journal, 2011, 100(12):3016-3024. |
[16] | FREED A S, CRAMER S M. Protein-surface interaction maps for ion-exchange chromatography[J]. Langmuir, 2011, 27(7):3561-3568. |
[17] | CHUNG W K, HOU Y, FREED A, et al. Investigation of protein binding affinity and preferred orientations in ion exchange systems using a homologous protein library[J]. Biotechnology and Bioengineering, 2009, 102(3):869-881. |
[18] | CHUNG W K, HOLSTEIN M A, FREED A S, et al. Ion exchange chromatographic behavior of a homologous cytochrome C variant library obtained by controlled succinylation[J]. Separation Science and Technology, 2010, 45(15):2144-2152. |
[19] | LANG K M H, KITTELINANN J, DUERR C, et al. A comprehensive molecular dynamics approach to protein retention modeling in ion exchange chromatography[J]. Journal of Chromatography A, 2015, 1381:184-193. |
[20] | LANG K M H, KITTELMANN J, PILGRAM F, et al. Custom-tailored adsorbers:a molecular dynamics study on optimal design of ion exchange chromatography material[J]. Journal of Chromatography A, 2015, 1413:60-67. |
[21] | LIANG J, FIEG G, KEIL F J, et al. Adsorption of proteins onto ion-exchange chromatographic media:a molecular dynamics study[J]. Industrial & Engineering Chemistry Research, 2012, 51(49):16049-16058. |
[22] | MAKRODIMITRIS K, FERNANDEZ E J, WOOLF T B, et al. Mesoscopic simulation of adsorption of peptides in a hydrophobic chromatography system[J]. Analytical Chemistry, 2005, 77(5):1243-1252. |
[23] | ZHANG L, ZHAO G F, SUN Y. Molecular insight into protein conformational transition in hydrophobic charge induction chromatography:a molecular dynamics simulation[J]. Journal of Physical Chemistry B, 2009, 113(19):6873-6880. |
[24] | ZHANG L, ZHAO G F, SUN Y. Effects of ligand density on hydrophobic charge induction chromatography:molecular dynamics simulation[J]. Journal of Physical Chemistry B, 2010, 114(6):2203-2211. |
[25] | ZHANG L, BAI S, SUN Y. Molecular dynamics simulation of the effect of ligand homogeneity on protein behavior in hydrophobic charge induction chromatography[J]. Journal of Molecular Graphics and Modelling, 2010, 28(8):863-869. |
[26] | ZHANG L, ZHAO G F, SUN Y. Molecular dynamics simulation and experimental validation of the effect of pH on protein desorption in hydrophobic charge induction chromatography[J]. Molecular Simulation, 2010, 36(13):1096-1103. |
[27] | ZHANG L, SUN Y. Effect of ligand chain length on hydrophobic charge induction chromatography revealed by molecular dynamics simulations[J]. Frontiers of Chemical Science and Engineering, 2013, 7(4):456-463. |
[28] | CHUNG W K, FREED A S, HOLSTEIN M A, et al. Evaluation of protein adsorption and preferred binding regions in multimodal chromatography using NMR[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(39):16811-16816. |
[29] | CHUNG W K, HOU Y, HOLSTEIN M, et al. Investigation of protein binding affinity in multimodal chromatographic systems using a homologous protein library[J]. Journal of Chromatography A, 2010, 1217(2):191-198. |
[30] | HOLSTEIN M A, CHUNG W K, PARIMAL S, et al. Probing multimodal ligand binding regions on ubiquitin using nuclear magnetic resonance, chromatography, and molecular dynamics simulations[J]. Journal of Chromatography A, 2012, 1229:113-120. |
[31] | CHUNG W K, EVANS S T, FREED A S, et al. Utilization of lysozyme charge ladders to examine the effects of protein surface charge distribution on binding affinity in ion exchange systems[J]. Langmuir, 2010, 26(2):759-768. |
[32] | FREED A S, GARDE S, CRAMER S M. Molecular simulations of multimodal ligand-protein binding:elucidation of binding sites and correlation with experiments[J]. Journal of Physical Chemistry B, 2011, 115(45):13320-13327. |
[33] | PARIMAL S, GARDE S, CRAMER S M. Interactions of multimodal ligands with proteins:insights into selectivity using molecular dynamics simulations[J]. Langmuir, 2015, 31(27):7512-7523. |
[34] | PARIMAL S, GARDE S, CRAMER S M. Effect of guanidine and arginine on protein-ligand interactions in multimodal cation-exchange chromatography[J]. Biotechnology Progress, 2017, 33(2):435-447. |
[35] | LU H L, LIN D Q, GAO D, et al. Evaluation of immunoglobulin adsorption on the hydrophobic charge-induction resins with different ligand densities and pore sizes[J]. Journal of Chromatography A, 2013, 1278:61-68. |
[36] | LIN D Q, TONG H F, WANG H Y, et al. Molecular insight into the ligand-IgG interactions for 4-mercaptoethyl-pyridine based hydrophobic charge-induction chromatography[J]. Journal of Physical Chemistry B, 2012, 116(4):1393-1400. |
[37] | LIN D Q, TONG H F, WANG H Y, et al. Molecular mechanism of hydrophobic charge-induction chromatography:interactions between the immobilized 4-mercaptoethyl-pyridine ligand and IgG[J]. Journal of Chromatography A, 2012, 1260:143-153. |
[38] | TONG H, CAVALLOTTI C, YAO S, et al. Molecular insight into protein binding orientations and interaction modes on hydrophobic charge-induction resin[J]. Journal of Chromatography A, 2017, 1512:34-42. |
[39] | WANG R, LIN D, CHU W, et al. New tetrapeptide ligands designed for antibody purification with biomimetic chromatography:molecular simulation and experimental validation[J]. Biochemical Engineering Journal, 2016, 114:194-204. |
[40] | YU G, LIU J, ZHOU J. Mesoscopic coarse-grained simulations of hydrophobic charge induction chromatography (HCIC) for protein purification[J]. AIChE Journal, 2015, 61(6):2035-2047. |
[41] | YANG Y, GENG X D. Mixed-mode chromatography and its applications to biopolymers[J]. Journal of Chromatography A, 2011, 1218(49SI):8813-8825. |
[42] | ZHAO G, DONG X, SUN Y. Ligands for mixed-mode protein chromatography:principles, characteristics and design[J]. Journal of Biotechnology, 2009, 144(1):3-11. |
[43] | DAI L, LI W, SUN F, et al. A strategy of designing the ligand of antibody affinity chromatography based on molecular dynamics simulation[J]. Journal of Chromatography A, 2016, 1463:81-89. |
[44] | LAPELOSA M, PATAPOFF T W, ZARRAGA I E. Modeling of protein-anion exchange resin interaction for the human growth hormone charge variants[J]. Biophysical Chemistry, 2015, 207:1-6. |
[45] | BASCONI J E, CARTA G, SHIRTS M R. Effects of polymer graft properties on protein adsorption and transport in ion exchange chromatography:a multiscale modeling study[J]. Langmuir, 2015, 31(14):4176-4187. |
[46] | SALVALAGLIO M, PALONI M, GUELAT B, et al. A two level hierarchical model of protein retention in ion exchange chromatography[J]. Journal of Chromatography A, 2015, 1411:50-62. |
[47] | HIRANO A, MARUYAMA T, SHIRAKI K, et al. A study of the small-molecule system used to investigate the effect of arginine on antibody elution in hydrophobic charge-induction chromatography[J]. Protein Expression and Purification, 2017, 129:44-52. |
[48] | HIRANO A, ARAKAWA T, KAMEDA T. Effects of arginine on multimodal anion exchange chromatography[J]. Protein Expression and Purification, 2015, 116:105-112. |
[49] | LIU J, PENG C, YU G, et al. Molecular simulation study of feruloyl esterase adsorption on charged surfaces:effects of surface charge density and ionic strength[J]. Langmuir, 2015, 31(39):10751-10763. |
[50] | KUBIAK-OSSOWSKA K, MULHERAN P A. Multiprotein interactions during surface adsorption:a molecular dynamics study of lysozyme aggregation at a charged solid surface[J]. Journal of Physical Chemistry B, 2011, 115(28):8891-8900. |
[51] | LIANG J, FIEG G, JAKOBTORWEIHEN S. Molecular dynamics simulations of a binary protein mixture adsorption onto ion-exchange adsorbent[J]. Industrial & Engineering Chemistry Research, 2015, 54(10):2794-2802. |
[52] | LIANG J, FIEG G, JAKOBTORWEIHEN S. Ion-exchange adsorption of proteins:experiments and molecular dynamics simulations[J]. Chemie Ingenieur Technik, 2015, 87(7):903-909. |
[53] | RAFFAINI G, GANAZZOLI F. Sequential adsorption of proteins and the surface modification of biomaterials:a molecular dynamics study[J]. Journal of Materials Science-Materials in Medicine, 2007, 18(2):309-316. |
[54] | 白姝, 李浩, 张麟. 静电排斥表面诱导溶菌酶分子站立[J]. 物理化学学报, 2013, 29(4):849-857. BAI S, LI H, ZHANG L. Standing orientation of lysozymes induced by electrostatically repulsive surface[J]. Acta Physico-Chimica Sinica, 2013, 29(4):849-857. |
[55] | WANG G, DONG X, SUN Y. Ion-exchange resins greatly facilitate refolding of like-charged proteins at high concentrations[J]. Biotechnology and Bioengineering, 2011, 108(5):1068-1077. |
[56] | DUAN L, LIU X, ZHANG J Z. Interaction entropy:a new paradigm for highly efficient and reliable computation of protein-ligand binding free energy[J]. Journal of the American Chemical Society, 2016, 138(17):5722-5728. |
[57] | FEARS K P, SIVARAMAN B, POWELL G L, et al. Probing the conformation and orientation of adsorbed enzymes using side-chain modification[J]. Langmuir, 2009, 25(16):9319-9327. |
[58] | GRAY J J. The interaction of proteins with solid surfaces[J]. Current Opinion in Structural Biology, 2004, 14(1):110-115. |
[59] | CANCHI D R, GARCIA A E. Cosolvent effects on protein stability[J]. Annual Review of Physical Chemistry, 2013, 64:273-293. |
[60] | ENGLAND J L, HARAN G. Role of solvation effects in protein denaturation:from thermodynamics to single molecules and back[J]. Annual Review of Physical Chemistry, 2011, 62:257-277. |
[61] | BENNION B J, DAGGETT V. The molecular basis for the chemical denaturation of proteins by urea[J]. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(9):5142-5147. |
[62] | BENEDEK K, DONG S, KARGER B L. Kinetics of unfolding of proteins on hydrophobic surfaces in reversed-phase liquid chromatography.[J]. Journal of Chromatography, 1984, 317:227-243. |
[63] | LIN S W, OROSZLAN P, KARGER B L. Effect of metal ions on the unfolding kinetics of alpha-lactalbumin on weakly hydrophobic surfaces.[J]. Journal of Chromatography, 1991, 536(1/2):17-30. |
[64] | MCNAY J L, FERNANDEZ E J. How does a protein unfold on a reversed-phase liquid chromatography surface?[J]. Journal of Chromatography A, 1999, 849(1):135-148. |
[65] | GOSPODAREK A M, SMATLAK M E, O'CONNELL J P, et al. Protein stability and structure in HIC:hydrogen exchange experiments and corex calculations[J]. Langmuir, 2011, 27(1):286-295. |
[66] | JUNGBAUER A, MACHOLD C, HAHN R. Hydrophobic interaction chromatography of proteins(Ⅲ):Unfolding of proteins upon adsorption[J]. Journal of Chromatography A, 2005, 1079(1/2):221-228. |
[67] | UEBERBACHER R, RODLER A, HAHN R, et al. Hydrophobic interaction chromatography of proteins:thermodynamic analysis of conformational changes[J]. Journal of Chromatography A, 2010, 1217(2):184-190. |
[68] | EUSTON S R, HUGHES P, NASER M A, et al. Comparison of the adsorbed conformation of barley lipid transfer protein at the decane-water and vacuum-water interface:a molecular dynamics simulation[J]. Biomacromolecules, 2008, 9(5):1443-1453. |
[69] | ZHANG L, LU D N, LIU Z. Dynamic control of protein conformation transition in chromatographic separation based on hydrophobic interactions:molecular dynamics simulation[J]. Journal of Chromatography A, 2009, 1216(12):2483-2490. |
[70] | LIU H, DU W J, DONG X Y, et al. Integrative refolding and purification of histidine-tagged protein by like-charge facilitated refolding and metal-chelate affinity adsorption[J]. Journal of Chromatography A, 2014, 1344:59-65. |
[71] | BAI Q, KONG Y, GENG X D. Studies on the refolding of reduced-denaturated insulin with high performance hydrophobic interaction chromatography[J]. Chemical Journal of Chinese Universities, 2002, 23(8):1483-1488. |
[72] | GENG X P, ZHANG H F, WANG B H, et al. Calorimetric determination of enthalpies of lysozyme folding at a liquid-solid interface[J]. Journal of Thermal Analysis and Calorimetry, 2005, 82(1):193-199. |
[73] | GENG X P, WU Y N, SONG J R, et al. Effect of salt concentrations on the displacement adsorption enthalpies of denatured protein folding at a moderately hydrophobic surface[J]. Journal of Thermal Analysis and Calorimetry, 2006, 85(3):593-600. |
[74] | JONES T T, FERNANDEZ E J. alpha-Lactalbumin tertiary structure changes on hydrophobic interaction chromatography surfaces[J]. Journal of Colloid and Interface Science, 2003, 259(1):27-35. |
[75] | TAO Y, CARTA G, FERREIRA G, et al. Adsorption of deamidated antibody variants on macroporous and dextran-grafted cation exchangers (Ⅱ):Adsorption kinetics[J]. Journal of Chromatography A, 2011, 1218(11):1530-1537. |
[76] | HONG Y, LIU N, WEI W, et al. Protein adsorption to poly(ethylenimine)-modified Sepharose FF (Ⅲ):Comparison between different proteins[J]. Journal of Chromatography A, 2014, 1342:30-36. |
[77] | YU L, SUN Y. Protein adsorption to poly(ethylenimine)-modified Sepharose FF (Ⅱ):Effect of ionic strength[J]. Journal of Chromatography A, 2013, 1305:85-93. |
[78] | YU L, TAO S, DONG X, et al. Protein adsorption to poly(ethylenimine)-modified Sepharose FF (Ⅰ):A critical ionic capacity for drastically enhanced capacity and uptake kinetics[J]. Journal of Chromatography A, 2013, 1305:76-84. |
[79] | XUE A, YU L, SUN Y. Implications from protein uptake kinetics onto dextran-grafted Sepharose FF coupled with ion exchange and affinity ligands[J]. Chinese Journal of Chemical Engineering, 2017, 25(7):906-910. |
[80] | 余林玲, 孙彦. 接枝聚合物配基的蛋白质吸附层析[J]. 化工学报, 2016, 67(1):140-151. YU L L, SUN Y. Adsorptive protein chromatography with grafted polymeric ligands[J]. CIESC Journal, 2016, 67(1):140-151. |
[81] | FOUQUEAU A, MEUWLY M, BEMISH R J. Adsorption of acridine orange at a C-8,C-18/water/acetonitrile interface[J]. Journal of Physical Chemistry B, 2007, 111(34):10208-10216. |
[82] | BRAUN J, FOUQUEAU A, BEMISH R J, et al. Solvent structures of mixed water/acetonitrile mixtures at chromatographic interfaces from computer simulations[J]. Physical Chemistry Chemical Physics, 2008, 10(32):4765-4777. |
[83] | LI X, MCGUFFIN V L. Theoretical evaluation of methods for extracting retention factors and kinetic rate constants in liquid chromatography[J]. Journal of Chromatography A, 2008, 1203(1):67-80. |
[84] | MCGUFFIN V L. Stochastic simulation as a unified approach to separation science[J]. Analytical and Bioanalytical Chemistry, 2005, 381(1):106-109. |
[85] | KROUSKOP P E, MCGUFFIN V L. Stochastic simulation of the partition mechanism with a heterogeneous surface phase[J]. Journal of Chromatography A, 2002, 959(1/2):49-64. |
[86] | MCGUFFIN V L, KROUSKOP P E, WU P R. Stochastic simulation of the partition mechanism under diffusion-limited conditions in chromatography and electrochromatography[J]. Journal of Chromatography A, 1998, 828(1/2):37-50. |
[87] | BASCONI J E, CARTA G, SHIRTS M R. Multiscale modeling of protein adsorption and transport in macroporous and polymer-grafted ion exchangers[J]. AIChE Journal, 2014, 60(11):3888-3901.]. Langmuir, 2011, 27(7):3561-3568. |
[17] | CHUNG W K, HOU Y, FREED A, et al. Investigation of protein binding affinity and preferred orientations in ion exchange systems using a homologous protein library[J]. Biotechnology and Bioengineering, 2009, 102(3):869-881. |
[18] | CHUNG W K, HOLSTEIN M A, FREED A S, et al. Ion Exchange chromatographic behavior of a homologous cytochrome C variant library obtained by controlled succinylation[J]. Separation Science and Technology, 2010, 45(15):2144-2152. |
[19] | LANG K M H, KITTELINANN J, DUERR C, et al. A comprehensive molecular dynamics approach to protein retention modeling in ion exchange chromatography[J]. Journal of Chromatography A, 2015, 1381:184-193. |
[20] | LANG K M H, KITTELMANN J, PILGRAM F, et al. Custom-tailored adsorbers:A molecular dynamics study on optimal design of ion exchange chromatography material[J]. Journal of Chromatography A, 2015, 1413:60-67. |
[21] | LIANG J, FIEG G, KEIL F J, et al. Adsorption of proteins onto ion-exchange chromatographic media:a molecular dynamics study[J]. Industrial & Engineering Chemistry Research, 2012, 51(49):16049-16058. |
[22] | MAKRODIMITRIS K, FERNANDEZ E J, WOOLF T B, et al. Mesoscopic simulation of adsorption of peptides in a hydrophobic chromatography system[J]. Analytical Chemistry, 2005, 77(5):1243-1252. |
[23] | ZHANG L, ZHAO G F, SUN Y. Molecular insight into protein conformational transition in hydrophobic charge induction chromatography:a molecular dynamics simulation[J]. Journal of Physical Chemistry B, 2009, 113(19):6873-6880. |
[24] | ZHANG L, ZHAO G F, SUN Y. Effects of ligand density on hydrophobic charge induction chromatography:Molecular dynamics simulation[J]. Journal of Physical Chemistry B, 2010, 114(6):2203-2211. |
[25] | ZHANG L, BAI S, SUN Y. Molecular dynamics simulation of the effect of ligand homogeneity on protein behavior in hydrophobic charge induction chromatography[J]. Journal of Molecular Graphics and Modelling, 2010, 28(8):863-869. |
[26] | ZHANG L, ZHAO G F, SUN Y. Molecular dynamics simulation and experimental validation of the effect of pH on protein desorption in hydrophobic charge induction chromatography[J]. Molecular Simulation, 2010, 36(13):1096-1103. |
[27] | ZHANG L, SUN Y. Effect of ligand chain length on hydrophobic charge induction chromatography revealed by molecular dynamics simulations[J]. Frontiers of Chemical Science and Engineering, 2013, 7(4):456-463. |
[28] | CHUNG W K, FREED A S, HOLSTEIN M A, et al. Evaluation of protein adsorption and preferred binding regions in multimodal chromatography using NMR[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(39):16811-16816. |
[29] | CHUNG W K, HOU Y, HOLSTEIN M, et al. Investigation of protein binding affinity in multimodal chromatographic systems using a homologous protein library[J]. Journal of Chromatography A, 2010, 1217(2):191-198. |
[30] | HOLSTEIN M A, CHUNG W K, PARIMAL S, et al. Probing multimodal ligand binding regions on ubiquitin using nuclear magnetic resonance, chromatography, and molecular dynamics simulations[J]. Journal of Chromatography A, 2012, 1229:113-120. |
[31] | CHUNG W K, EVANS S T, FREED A S, et al. Utilization of lysozyme charge ladders to examine the effects of protein surface charge distribution on binding affinity in ion exchange systems[J]. Langmuir, 2010, 26(2):759-768. |
[32] | FREED A S, GARDE S, CRAMER S M. Molecular simulations of multimodal ligand-protein binding:elucidation of binding sites and correlation with experiments[J]. Journal of Physical Chemistry B, 2011, 115(45):13320-13327. |
[33] | PARIMAL S, GARDE S, CRAMER S M. Interactions of multimodal ligands with proteins:insights into selectivity using molecular dynamics simulations[J]. Langmuir, 2015, 31(27):7512-7523. |
[34] | PARIMAL S, GARDE S, CRAMER S M. Effect of guanidine and arginine on protein-ligand interactions in multimodal cation-exchange chromatography[J]. Biotechnology Progress, 2017, 33(2):435-447. |
[35] | LU H L, LIN D Q, GAO D, et al. Evaluation of immunoglobulin adsorption on the hydrophobic charge-induction resins with different ligand densities and pore sizes[J]. Journal of Chromatography A, 2013, 1278:61-68. |
[36] | LIN D Q, TONG H F, WANG H Y, et al. Molecular insight into the ligand-IgG interactions for 4-mercaptoethyl-pyridine based hydrophobic charge-induction chromatography[J]. Journal of Physical Chemistry B, 2012, 116(4):1393-1400. |
[37] | LIN D Q, TONG H F, WANG H Y, et al. Molecular mechanism of hydrophobic charge-induction chromatography:Interactions between the immobilized 4-mercaptoethyl-pyridine ligand and IgG[J]. Journal of Chromatography A, 2012, 1260:143-153. |
[38] | TONG H, CAVALLOTTI C, YAO S, et al. Molecular insight into protein binding orientations and interaction modes on hydrophobic charge-induction resin[J]. Journal of Chromatography A, 2017, 1512:34-42. |
[39] | WANG R, LIN D, CHU W, et al. New tetrapeptide ligands designed for antibody purification with biomimetic chromatography:Molecular simulation and experimental validation[J]. Biochemical Engineering Journal, 2016, 114:194-204. |
[40] | YU G, LIU J, ZHOU J. Mesoscopic coarse-grained simulations of hydrophobic charge induction chromatography (HCIC) for protein purification[J]. AIChE Journal, 2015, 61(6):2035-2047. |
[41] | YANG Y, GENG X D. Mixed-mode chromatography and its applications to biopolymers[J]. Journal of Chromatography A, 2011, 1218(49SI):8813-8825. |
[42] | ZHAO G, DONG X, SUN Y. Ligands for mixed-mode protein chromatography:Principles, characteristics and design[J]. Journal of Biotechnology, 2009, 144(1):3-11. |
[43] | DAI L, LI W, SUN F, et al. A strategy of designing the ligand of antibody affinity chromatography based on molecular dynamics simulation[J]. Journal of Chromatography A, 2016, 1463:81-89. |
[44] | LAPELOSA M, PATAPOFF T W, ZARRAGA I E. Modeling of protein-anion exchange resin interaction for the human growth hormone charge variants[J]. Biophysical Chemistry, 2015, 207:1-6. |
[45] | BASCONI J E, CARTA G, SHIRTS M R. Effects of polymer graft properties on protein adsorption and transport in ion exchange chromatography:a multiscale modeling study[J]. Langmuir, 2015, 31(14):4176-4187. |
[46] | SALVALAGLIO M, PALONI M, GUELAT B, et al. A two level hierarchical model of protein retention in ion exchange chromatography[J]. Journal of Chromatography A, 2015, 1411:50-62. |
[47] | HIRANO A, MARUYAMA T, SHIRAKI K, et al. A study of the small-molecule system used to investigate the effect of arginine on antibody elution in hydrophobic charge-induction chromatography[J]. Protein Expression and Purification, 2017, 129:44-52. |
[48] | HIRANO A, ARAKAWA T, KAMEDA T. Effects of arginine on multimodal anion exchange chromatography[J]. Protein Expression and Purification, 2015, 116:105-112. |
[49] | LIU J, PENG C, YU G, et al. Molecular simulation study of feruloyl esterase adsorption on charged surfaces:effects of surface charge density and ionic strength[J]. Langmuir, 2015, 31(39):10751-10763. |
[50] | KUBIAK-OSSOWSKA K, MULHERAN P A. Multiprotein interactions during surface adsorption:a molecular dynamics study of lysozyme aggregation at a charged solid surface[J]. Journal of Physical Chemistry B, 2011, 115(28):8891-8900. |
[51] | LIANG J, FIEG G, JAKOBTORWEIHEN S. Molecular dynamics simulations of a binary protein mixture adsorption onto ion-exchange adsorbent[J]. Industrial & Engineering Chemistry Research, 2015, 54(10):2794-2802. |
[52] | LIANG J, FIEG G, JAKOBTORWEIHEN S. Ion-exchange adsorption of proteins:experiments and molecular dynamics simulations[J]. Chemie Ingenieur Technik, 2015, 87(7):903-909. |
[53] | RAFFAINI G, GANAZZOLI F. Sequential adsorption of proteins and the surface modification of biomaterials:A molecular dynamics study[J]. Journal of Materials Science-Materials in Medicine, 2007, 18(2):309-316. |
[54] | 白姝,李浩,张麟. 静电排斥表面诱导溶菌酶分子站立. 物理化学学报, 2013, 29(4):849-857. BAI S, LI H, ZHANG L. Standing orientation of lysozymes induced by electrostatically repulsive surface[J]. Acta Physico-Chimica Sinica, 2013, 29(4):849-857. |
[55] | WANG G, DONG X, SUN Y. Ion-exchange resins greatly facilitate refolding of like-charged proteins at high concentrations[J]. Biotechnology and Bioengineering, 2011, 108(5):1068-1077. |
[56] | DUAN L, LIU X, ZHANG J Z. Interaction entropy:a new paradigm for highly efficient and reliable computation of protein-ligand binding free energy[J]. Journal of the American Chemical Society, 2016, 138(17):5722-8. |
[57] | FEARS K P, SIVARAMAN B, POWELL G L, et al. Probing the conformation and orientation of adsorbed enzymes using side-chain modification[J]. Langmuir, 2009, 25(16):9319-9327. |
[58] | GRAY J J. The interaction of proteins with solid surfaces[J]. Current Opinion in Structural Biology, 2004, 14(1):110-115. |
[59] | CANCHI D R, GARCIA A E. Cosolvent effects on protein stability[J]. Annual Review of Physical Chemistry, 2013, 64:273-293. |
[60] | ENGLAND J L, HARAN G. Role of solvation effects in protein denaturation:from thermodynamics to single molecules and back[J]. Annual Review of Physical Chemistry, 2011, 62:257-277. |
[61] | BENNION B J, DAGGETT V. The molecular basis for the chemical denaturation of proteins by urea[J]. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(9):5142-5147. |
[62] | BENEDEK K, DONG S, KARGER B L. Kinetics of unfolding of proteins on hydrophobic surfaces in reversed-phase liquid chromatography.[J]. Journal of Chromatography, 1984, 317:227-243. |
[63] | LIN S W, OROSZLAN P, KARGER B L. Effect of metal ions on the unfolding kinetics of alpha-lactalbumin on weakly hydrophobic surfaces.[J]. Journal of Chromatography, 1991, 536(1-2):17-30. |
[64] | MCNAY J L, FERNANDEZ E J. How does a protein unfold on a reversed-phase liquid chromatography surface?[J]. Journal of Chromatography A, 1999, 849(1):135-148. |
[65] | GOSPODAREK A M, SMATLAK M E, O'CONNELL J P, et al. Protein stability and structure in HIC:hydrogen exchange experiments and corex calculations[J]. Langmuir, 2011, 27(1):286-295. |
[66] | JUNGBAUER A, MACHOLD C, HAHN R. Hydrophobic interaction chromatography of proteins(Ⅲ):Unfolding of proteins upon adsorption[J]. Journal of Chromatography A, 2005, 1079(1-2):221-228. |
[67] | UEBERBACHER R, RODLER A, HAHN R, et al. Hydrophobic interaction chromatography of proteins:Thermodynamic analysis of conformational changes[J]. Journal of Chromatography A, 2010, 1217(2):184-190. |
[68] | EUSTON S R, HUGHES P, NASER M A, et al. Comparison of the adsorbed conformation of barley lipid transfer protein at the decane-water and vacuum-water interface:A molecular dynamics simulation[J]. Biomacromolecules, 2008, 9(5):1443-1453. |
[69] | ZHANG L, LU D N, LIU Z. Dynamic control of protein conformation transition in chromatographic separation based on hydrophobic interactions:Molecular dynamics simulation[J]. Journal of Chromatography A, 2009, 1216(12):2483-2490. |
[70] | LIU H, DU W J, DONG X Y, et al. Integrative refolding and purification of histidine-tagged protein by like-charge facilitated refolding and metal-chelate affinity adsorption[J]. Journal of Chromatography A, 2014, 1344:59-65. |
[71] | BAI Q, KONG Y, GENG X D. Studies on the refolding of reduced-denaturated insulin with high performance hydrophobic interaction chromatography[J]. Chemical Journal of Chinese Universities-Chinese, 2002, 23(8):1483-1488. |
[72] | GENG X P, ZHANG H F, WANG B H, et al. Calorimetric determination of enthalpies of lysozyme folding at a liquid-solid interface[J]. Journal of Thermal Analysis and Calorimetry, 2005, 82(1):193-199. |
[73] | GENG X P, WU Y N, SONG J R, et al. Effect of salt concentrations on the displacement adsorption enthalpies of denatured protein folding at a moderately hydrophobic surface[J]. Journal of Thermal Analysis and Calorimetry, 2006, 85(3):593-600. |
[74] | JONES T T, FERNANDEZ E J. alpha-Lactalbumin tertiary structure changes on hydrophobic interaction chromatography surfaces[J]. Journal of Colloid and Interface Science, 2003, 259(1):27-35. |
[75] | TAO Y, CARTA G, FERREIRA G, et al. Adsorption of deamidated antibody variants on macroporous and dextran-grafted cation exchangers (Ⅱ):Adsorption kinetics[J]. Journal of Chromatography A, 2011, 1218(11):1530-1537. |
[76] | HONG Y, LIU N, WEI W, et al. Protein adsorption to poly(ethylenimine)-modified Sepharose FF (Ⅲ):Comparison between different proteins[J]. Journal of Chromatography A, 2014, 1342:30-36. |
[77] | YU L, SUN Y. Protein adsorption to poly(ethylenimine)-modified Sepharose FF (Ⅱ):Effect of ionic strength[J]. Journal of Chromatography A, 2013, 1305:85-93. |
[78] | YU L, TAO S, DONG X, et al. Protein adsorption to poly(ethylenimine)-modified Sepharose FF (I):A critical ionic capacity for drastically enhanced capacity and uptake kinetics[J]. Journal of Chromatography A, 2013, 1305:76-84. |
[79] | XUE A, YU L, SUN Y. Implications from protein uptake kinetics onto dextran-grafted Sepharose FF coupled with ion exchange and affinity ligands[J]. Chinese Journal of Chemical Engineering, 2017, 25(7):906-910. |
[80] | 余林玲,孙彦. 接枝聚合物配基的蛋白质吸附层析. 化工学报, 2016, 67(1):140-151. YU L, SUN Y. Adsorptive protein chromatography with grafted polymeric ligands[J]. CIESC Journal, 2016, 67(1):140-151. |
[81] | FOUQUEAU A, MEUWLY M, BEMISH R J. Adsorption of acridine orange at a C-8,C-18/water/acetonitrile interface[J]. Journal of Physical Chemistry B, 2007, 111(34):10208-10216. |
[82] | BRAUN J, FOUQUEAU A, BEMISH R J, et al. Solvent structures of mixed water/acetonitrile mixtures at chromatographic interfaces from computer simulations[J]. Physical Chemistry Chemical Physics, 2008, 10(32):4765-4777. |
[83] | LI X, MCGUFFIN V L. Theoretical evaluation of methods for extracting retention factors and kinetic rate constants in liquid chromatography[J]. Journal of Chromatography A, 2008, 1203(1):67-80. |
[84] | MCGUFFIN V L. Stochastic simulation as a unified approach to separation science[J]. Analytical and Bioanalytical Chemistry, 2005, 381(1):106-109. |
[85] | KROUSKOP P E, MCGUFFIN V L. Stochastic simulation of the partition mechanism with a heterogeneous surface phase[J]. Journal of Chromatography A, 2002, 959(1/2):49-64. |
[86] | MCGUFFIN V L, KROUSKOP P E, WU P R. Stochastic simulation of the partition mechanism under diffusion-limited conditions in chromatography and electrochromatography[J]. Journal of Chromatography A, 1998, 828(1-2):37-50. |
[87] | BASCONI J E, CARTA G, SHIRTS M R. Multiscale modeling of protein adsorption and transport in macroporous and polymer-grafted ion exchangers[J]. AIChE Journal, 2014, 60(11):3888-3901. |
[1] | 晁京伟, 许嘉兴, 李廷贤. 基于无管束蒸发换热强化策略的吸附热池的供热性能研究[J]. 化工学报, 2023, 74(S1): 302-310. |
[2] | 宋明昊, 赵霏, 刘淑晴, 李国选, 杨声, 雷志刚. 离子液体脱除模拟油中挥发酚的多尺度模拟与研究[J]. 化工学报, 2023, 74(9): 3654-3664. |
[3] | 杨学金, 杨金涛, 宁平, 王访, 宋晓双, 贾丽娟, 冯嘉予. 剧毒气体PH3的干法净化技术研究进展[J]. 化工学报, 2023, 74(9): 3742-3755. |
[4] | 胡建波, 刘洪超, 胡齐, 黄美英, 宋先雨, 赵双良. 有机笼跨细胞膜易位行为的分子动力学模拟研究[J]. 化工学报, 2023, 74(9): 3756-3765. |
[5] | 赵佳佳, 田世祥, 李鹏, 谢洪高. SiO2-H2O纳米流体强化煤尘润湿性的微观机理研究[J]. 化工学报, 2023, 74(9): 3931-3945. |
[6] | 赵亚欣, 张雪芹, 王荣柱, 孙国, 姚善泾, 林东强. 流穿模式离子交换层析去除单抗聚集体[J]. 化工学报, 2023, 74(9): 3879-3887. |
[7] | 高燕, 伍鹏, 尚超, 胡泽君, 陈晓东. 基于双流体喷嘴的磁性琼脂糖微球的制备及其蛋白吸附性能探究[J]. 化工学报, 2023, 74(8): 3457-3471. |
[8] | 汪林正, 陆俞冰, 张睿智, 罗永浩. 基于分子动力学模拟的VOCs热氧化特性分析[J]. 化工学报, 2023, 74(8): 3242-3255. |
[9] | 盛冰纯, 于建国, 林森. 铝基锂吸附剂分离高钠型地下卤水锂资源过程研究[J]. 化工学报, 2023, 74(8): 3375-3385. |
[10] | 张瑞航, 曹潘, 杨锋, 李昆, 肖朋, 邓春, 刘蓓, 孙长宇, 陈光进. ZIF-8纳米流体天然气乙烷回收工艺的产品纯度关键影响因素分析[J]. 化工学报, 2023, 74(8): 3386-3393. |
[11] | 陈吉, 洪泽, 雷昭, 凌强, 赵志刚, 彭陈辉, 崔平. 基于分子动力学的焦炭溶损反应及其机理研究[J]. 化工学报, 2023, 74(7): 2935-2946. |
[12] | 董明, 徐进良, 刘广林. 超临界水非均质特性分子动力学研究[J]. 化工学报, 2023, 74(7): 2836-2847. |
[13] | 王杰, 丘晓琳, 赵烨, 刘鑫洋, 韩忠强, 许雍, 蒋文瀚. 聚电解质静电沉积改性PHBV抗氧化膜的制备与性能研究[J]. 化工学报, 2023, 74(7): 3068-3078. |
[14] | 王新悦, 王俊杰, 曹思贤, 王翠, 李灵坤, 吴宏宇, 韩静, 吴昊. 玻璃内包材界面修饰对机械应力诱导的单克隆抗体聚集体形成的影响[J]. 化工学报, 2023, 74(6): 2580-2588. |
[15] | 刘远超, 蒋旭浩, 邵钶, 徐一帆, 钟建斌, 李耑. 几何尺寸及缺陷对石墨炔纳米带热输运特性的影响[J]. 化工学报, 2023, 74(6): 2708-2716. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||