化工学报 ›› 2018, Vol. 69 ›› Issue (11): 4566-4576.DOI: 10.11949/j.issn.0438-1157.20180600
付涛涛1, 徐子懿1, Tahir Muhammad Faran1, Cumbula Armando José1, 姜韶堃2, 朱春英1, 马友光1
收稿日期:
2018-06-01
修回日期:
2018-08-27
出版日期:
2018-11-05
发布日期:
2018-11-05
通讯作者:
付涛涛
基金资助:
国家自然科学基金项目(91634105,21776200,21576186)。
FU Taotao1, XU Ziyi1, TAHIR Muhammad Faran1, CUMBULA Armando José1, JIANG Shaokun2, ZHU Chunying1, MA Youguang1
Received:
2018-06-01
Revised:
2018-08-27
Online:
2018-11-05
Published:
2018-11-05
Supported by:
supported by the National Natural Science Foundation of China (91634105, 21776200, 21576186).
摘要:
微化学工程与技术是现代化学工程学科的前沿领域。微通道内液滴及气泡破裂动力学是决定多相过程并行微通道数目放大的基础与难点。破裂流型转换条件、界面动力学和尺寸调控等三方面是微通道内液滴与气泡破裂动力学的主要研究对象。讨论了对称微通道、非对称微通道、多级微通道、旁路微通道、含有障碍物的微通道内气泡和液滴破裂行为及影响因素,指出了目前微尺度下气泡与液滴破裂行为相关研究工作存在的不足,并对该领域未来的发展进行了展望。
中图分类号:
付涛涛, 徐子懿, Tahir Muhammad Faran, Cumbula Armando José, 姜韶堃, 朱春英, 马友光. 微通道内液滴/气泡破裂动力学分析[J]. 化工学报, 2018, 69(11): 4566-4576.
FU Taotao, XU Ziyi, TAHIR Muhammad Faran, CUMBULA Armando José, JIANG Shaokun, ZHU Chunying, MA Youguang. Progress in breakup dynamics of droplets and bubbles in microchannels[J]. CIESC Journal, 2018, 69(11): 4566-4576.
[1] | 陈光文, 袁权. 微化工技术[J]. 化工学报, 2003, 54(4):427-439. CHEN G W, YUAN Q. Micro-chemical technology[J]. Journal of Chemical Industry and Engineering(China), 2003, 54(4):427-439. |
[2] | 陈光文, 赵玉潮, 乐军, 等.微化工过程中的传递现象[J]. 化工学报, 2013, 64(1):63-75. CHEN G W, ZHAO Y C, YUE J, et al. Transport phenomena in micro-chemical engineering[J]. CIESC Journal, 2013, 64(1):63-75. |
[3] | 白璐, 付涛涛, 马友光, 等. 并行微通道内气液相分配规律[J]. 化工学报, 2014, 65(1):108-115. BAI L, FU T T, MA Y G, et al. Gas-liquid flow distribution of parallel microchannels[J]. CIESC Journal, 2014, 65(1):108-115. |
[4] | 付涛涛, 马友光, 朱春英. 微通道内气液(液液)二相流的实验研究进展[J]. 化学工程, 2011, 39(1):98-102. FU T T, MA Y G, ZHU C Y. Progress of experimental studies on gas-liquid (liquid-liquid) two phase flow in microchannels[J]. Chemical Engineering (China), 2011, 39(1):98-102. |
[5] | CHRISTOPHER G F, ANNA S L. Microfluidic methods for generating continuous droplet streams[J]. Journal of Physics D:Applied Physics, 2007, 40(19):R319-R336. |
[6] | FU T T, MA Y G, FUNFSCHILLING D. Squeezing-to-dripping transition for bubble formation in a microfluidic T-junction[J]. Chemical Engineering Science, 2010, 65(12):3739-3748. |
[7] | XU J H, DONG P F, ZHAP H. The dynamic effects of surfactants on droplet formation in coaxial microfluidic devices[J]. Langmuir, 2012, 28(25):9250-9258. |
[8] | SARRAZIN F, LOUBIERE K, PRAT L. Experimental and numerical study of droplets hydrodynamics in microchannels[J]. AIChE Journal, 2006, 52(12):4061-4070. |
[9] | KINOSHITA H, KANEDA S, FUJⅡ T. Three-dimensional measurement and visualization of internal flow of a moving droplet using confocal micro-PIV[J]. Lab Chip, 2007, 7(3):338-346. |
[10] | MURADOGLU M, STONE H A. Motion of large bubbles in curved channels[J]. Journal of Fluid Mechanics, 2007, 570(570):455-466. |
[11] | MADDALA J, SRINIVASAN B, BITHI S S. Design of a model-based feedback controller for active sorting and synchronization of droplets in a microfluidic loop[J]. AIChE Journal, 2012, 58(7):2120-2130. |
[12] | MADDALA J, VANAPALLI S A, RENGASWAMY R. Origin of periodic and chaotic dynamics due to drops moving in a microfluidic loop device[J]. Physical Review E, 2014, 89(2):023015. |
[13] | WANG K, LU Y, TOSTADO C P. Coalescences of microdroplets at a cross-shaped microchannel junction without strictly synchronism control[J]. Chemical Engineering Journal, 2013, 227(7):90-96. |
[14] | GU H, DUITS M H, MUGELE F. Droplets formation and merging in two-phase flow microfluidics[J]. International Journal of Molecular Sciences, 2011, 12(4):2572-2597. |
[15] | LINK D R, ANNA S, WEITZ D. Geometrically mediated breakup of drops in microfluidic devices[J]. Physical Review Letters, 2004, 92(5):054503. |
[16] | LINK D R, GRASLAND-MONGRAIN E, DURI A. Electric control of droplets in microfluidic devices[J]. Angewandte Chemie, 2006, 45(16):2556-2560. |
[17] | LESHANSKY A M, PISMEN L M. Breakup of drops in a microfluidic T junction[J]. Physics of Fluids, 2009, 21(2):054503. |
[18] | JULLIEN M C, CHING M J T M, COHEN C. Droplet breakup in microfluidic T-junctions at small capillary numbers[J]. Physics of Fluids, 2009, 21(7):023303. |
[19] | ZHANG Y X, WANG L Q. Nanoliter-droplet breakup in confined T-shaped junctions[J]. Current Nanoscience, 2011, 7(3):471-479. |
[20] | DE MENECH M. Modeling of droplet breakup in a microfluidic T-shaped junction with a phase-field model[J]. Physical Review E, 2006, 73(3):031505. |
[21] | ODY C P, BAROUD C N, DE LANGRE E. Transport of wetting liquid plugs in bifurcating microfluidic channels[J]. Journal of Colloid & Interface Science, 2007, 308(1):231-238. |
[22] | LESHANSKY A M, AFKHAMI S, JULLIEN M C. Obstructed breakup of slender drops in a microfluidic T junction[J]. Physical Review Letters, 2012, 108(26):264502. |
[23] | HOANG D A, PORTELA L M, KLEIJIN C R. Dynamics of droplet breakup in a T-junction[J]. Journal of Fluid Mechanics, 2013, 717(1):R4. |
[24] | CHEN Y P, DENG Z L. Hydrodynamics of a droplet passing through a microfluidic T-junction[J]. Journal of Fluid Mechanics, 2017, 819:401-434. |
[25] | SUN X, ZHU C Y, FU T T, et al. Dynamics of droplet breakup and formation of satellite droplets in a microfluidic T-junction[J]. Chemical Engineering Science, 2018, 188:158-169. |
[26] | MEHDI N, SIVA V. Volume-of-fluid simulations in microfluidic T-junction devices:influence of viscosity ratio on droplet size[J]. Physics of Fluids, 2017, 29 (3):032007. |
[27] | TING T H, YAP F, NGUYEN N T. Thermally mediated breakup of drops in microchannels[J]. Applied Physics Letters, 2006, 89(23):234101. |
[28] | ZHU H W, ZHANG N G, HE R X. Controllable fission of droplets and bubbles by pneumatic valve[J]. Microfluidics and Nanofluidics, 2011, 10(6):1343-1349. |
[29] | VERBRUGGEN B, LEIRS K, PUERS R. Selective DNA extraction with microparticles in segmented flow[J]. Microfluidics and Nanofluidics, 2015, 18(2):293-303. |
[30] | VERBRUGGEN B, TOTH T, CORNAGLIA M. Separation of magnetic microparticles in segmented flow using asymmetric splitting regimes[J]. Microfluidics and Nanofluidics, 2015, 18(1):91-102. |
[31] | VERBRUGGEN B, TOTH T, ATALAY Y T. Design of a flow-controlled asymmetric droplet splitter using computational fluid dynamics[J]. Microfluidics and Nanofluidics, 2013, 15(2):243-252. |
[32] | ENGL W, OHATA K, GUILLOT P. Selection of two-phase flow patterns at a simple junction in microfluidic devices[J]. Physical Review Letters, 2006, 96(13):134505. |
[33] | CARLSON A, DO-QUANG M, AMBERG G. Droplet dynamics in a bifurcating channel[J]. International Journal of Multiphase Flow, 2010, 36(5):397-405. |
[34] | CALDERON A J, FOWLKES J B, BULL J L. Bubble splitting in bifurcating tubes:a model study of cardiovascular gas emboli transport[J]. Journal of Applied Physiology, 2005, 99(2):479-487. |
[35] | YAMADA M, DOI S, MAENAKA H. Hydrodynamic control of droplet division in bifurcating microchannel and its application to particle synthesis[J]. Journal of Colloid & Interface Science, 2008, 321(2):401-407. |
[36] | BAROUD C N, TSIKATA S, HEIL M. The propagation of low-viscosity fingers into fluid-filled branching networks[J]. Journal of Fluid Mechanics, 2005, 546(1):285-294. |
[37] | ENGL W, ROCHE M, COLIN A. Droplet traffic at a simple junction at low capillary numbers[J]. Physical Review Letters, 2005, 95(20):208304. |
[38] | SAMIE M, SALARI A, SHAFⅡ M B. Breakup of microdroplets in asymmetric T junctions[J]. Physical Review E, 2013, 87(5):053003. |
[39] | ZHANG Y, WAMG L. Nanoliter-droplet breakup in confined T-shaped junctions[J]. Current Nanoscience, 2011, 7(3):471-479. |
[40] | BEDRAM A, MOOSAVI A. Droplet breakup in an asymmetric microfluidic T junction[J]. The European Physical Journal E, 2011, 34(8):78. |
[41] | BEDRAM A, DARABI A E, MOOSAVI A. Numerical investigation of an efficient method (T-junction with valve) for producing unequal-size droplets in micro and nano-fluidic systems[J]. Journal of Fluids Engineering, 2015, 137(3):031202. |
[42] | HOANG D A, HARINGA C, PORTELA L M. Design and characterization of bubble-splitting distributor for scaled-out multiphase microreactors[J]. Chemical Engineering Journal, 2014, 236(2):545-554. |
[43] | AL-HOUSSEINY T, HERNANDEZ J, STONE H A. Preferential flow penetration in a network of identical channels[J]. Physics of Fluids, 2014, 26(4):241-271. |
[44] | ZHENG M M, MA Y L, JIN T M, et al. Effects of topological changes in microchannel geometries on the asymmetric breakup of a droplet[J]. Microfluidics and Nanofluidics, 2016, 20(7):1-22. |
[45] | MORITANI T, YAMADA M, SEKI M. Generation of uniform-size droplets by multistep hydrodynamic droplet division in microfluidic circuits[J]. Microfluidics and Nanofluidics, 2011, 11(5):601-610. |
[46] | ADAMSON D N, MUSTAFI D, ZHANG J X. Production of arrays of chemically distinct nanolitre plugs via repeated splitting in microfluidic devices[J]. Lab Chip, 2006, 6(9):1178-1186. |
[47] | LAO K L, WANG J H, LEE G B. A microfluidic platform for formation of double-emulsion droplets[J]. Microfluidics and Nanofluidics, 2009, 7(5):709-719. |
[48] | SONG Y, MANNEVILLE P, BAROUD C N. Local interactions and the global organization of a two-phase flow in a branching tree[J]. Physical Review Letters, 2010, 105(13):134501. |
[49] | BAUDOIN M, SONG Y, MANNEVILLE P. Airway reopening through catastrophic events in a hierarchical network[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(3):859-864. |
[50] | VALASSIS D T, DODDE R E, ESPHUNIYANI B. Microbubble transport through a bifurcating vessel network with pulsatile flow[J]. Biomed Microdevices, 2012, 14(1):131-143. |
[51] | VERTTI-QUINTERO N, SONG Y, MANNEVILLE P. Behavior of liquid plugs at bifurcations in a microfluidic tree network[J]. Biomicrofluidics, 2012, 6(3):034105. |
[52] | HE K, WANG S F, HUANG J Z. The effect of flow pattern on split of two-phase flow through a micro-T-junction[J]. International Journal of Heat and Mass Transfer, 2011, 54(15/16):3587-3593. |
[53] | VILLONE M M, TROFA M, HULSENM A, et al. Numerical design of a T-shaped microfluidic device for deformability-based separation of elastic capsules and soft beads[J]. Physical Review E, 2017, 96:053103. |
[54] | MENETRIER-DEREMBLE L, TABELING P. Droplet breakup in microfluidic junctions of arbitrary angles[J]. Physical Review E, 2006, 74(3):035303. |
[55] | PROTIERE S, BAZANT M Z, WEITZ D. Droplet breakup in flow past an obstacle:a capillary instability due to permeability variations[J]. EPL, 2010, 92(5):54002. |
[56] | SALKIN L, SCHMIT A, COURBIN L. Passive breakups of isolated drops and one-dimensional assemblies of drops in microfluidic geometries:experiments and models[J]. Lab Chip, 2013, 13(15):3022-3032. |
[57] | SALKIN L, COURBIN L, PANIZZA P. Microfluidic breakups of confined droplets against a linear obstacle:the importance of the viscosity contrast[J]. Physical Review E, 2012, 86(3):036317. |
[58] | LEE J, LEE W, SON G. Numerical study of droplet breakup and merging in a microfluidic channel[J]. Journal of Mechanical Science and Technology, 2013, 27(6):1693-1699. |
[59] | LEE W, SON G. Numerical study of obstacle configuration for droplet splitting in a microchannel[J]. Computers & Fluids, 2013, 84(18):351-358. |
[60] | MA Y L, ZHENG M M, WANG J T, et al. Effects of obstacle lengths on the asymmetric breakup of a droplet in a straight microchannel[J]. Chemical Engineering Science, 2018, 179:104-114. |
[61] | FU T T, MA Y G, FUNFSCHILLING D. Dynamics of bubble breakup in a microfluidic T-junction divergence[J]. Chemical Engineering Science, 2011, 66(18):4184-4195. |
[62] | LIU X D, DENG Z L, CHEN Y P, et al. Bubble breakup in a microfluidic T-junction[J]. Science Bulletin, 2016, 61(10):811-824. |
[63] | LU Y T, FU T T, MA Y G. Dynamics of bubble breakup at a T junction[J]. Physical Review E, 2016, 93(2):022802. |
[64] | WU Y N, FU T T, ZHU C Y. Asymmetrical breakup of bubbles at a microfluidic T-junction divergence:feedback effect of bubble collision[J]. Microfluidics and Nanofluidics, 2012, 13(5):723-733. |
[65] | CALDERON A J, ESHPUNIYANI B, FOWLKES J B. A boundary element model of the transport of a semi-infinite bubble through a microvessel bifurcation[J]. Physics of Fluids, 2010, 22(6):299. |
[66] | CHEN X, ZIELINSKI R, GHADIAL S N. Computational analysis of microbubble flows in bifurcating airways:role of gravity, inertia, and surface tension[J]. J. Biomech. Eng., 2014, 136(10):101007. |
[67] | PRAKASH M, GERSHENFLED N. Microfluidic bubble logic[J]. Science, 2007, 315(5813):832-835. |
[68] | WANG X D, ZHU C Y, FU T T. Critical lengths for the transition of bubble breakup in microfluidic T-junctions[J]. Chemical Engineering Science, 2014, 111(8):244-254. |
[69] | FU T T, MA Y G, LI H Z. Hydrodynamic feedback on bubble breakup at a T-junction within an asymmetric loop[J]. AIChE Journal, 2014, 60(5):1920-1929. |
[70] | BRETHERTON F. The motion of long bubbles in tubes[J]. Journal of Fluid Mechanics, 1961, 10(2):166-188. |
[71] | RATULOWSKI J, CHANG H C. Transport of gas bubbles in capillaries[J]. Physics of Fluids A:Fluid Dynamics, 1989, 1(10):1642-1655. |
[72] | WANG X D, ZHU C Y, FU T T. Bubble breakup with permanent obstruction in an asymmetric microfluidic T-junction[J]. AIChE Journal, 2015, 61(3):1081-1091. |
[73] | ESHPUNIYANI B, FOWLKES J B, BULL J L. A bench top experimental model of bubble transport in multiple arteriole bifurcations[J]. International Journal of Heat and Fluid Flow, 2005, 26(6):865-872. |
[74] | 李静海, 胡英, 袁权. 探索介尺度科学: 从新角度审视老问题[J]. 中国科学:化学, 2014, (3):277-281. LI J H, HU Y, YUAN Q. Mesoscience:exploring old problems from a new angle[J]. Scientia Sinica Chimica, 2014, (3):277-281. |
[75] | 杨宁, 李静海. 化学工程中的介尺度科学与虚拟过程工程:分析与展望[J]. 化工学报, 2014, 65(7):2403-2409. YANG N, LI J H. Mesoscience in chemical engineering and virtual process engineering:analysis and perspective[J]. CIESC Journal, 2014, 65(7):2403-2409. |
[1] | 肖明堃, 杨光, 黄永华, 吴静怡. 浸没孔液氧气泡动力学数值研究[J]. 化工学报, 2023, 74(S1): 87-95. |
[2] | 吴馨, 龚建英, 靳龙, 王宇涛, 黄睿宁. 超声波激励下铝板表面液滴群输运特性的研究[J]. 化工学报, 2023, 74(S1): 104-112. |
[3] | 周晓庆, 李春煜, 杨光, 蔡爱峰, 吴静怡. 液滴撞击不同曲率过冷波纹面结冰动力学行为及机理研究[J]. 化工学报, 2023, 74(S1): 141-153. |
[4] | 邵苛苛, 宋孟杰, 江正勇, 张旋, 张龙, 高润淼, 甄泽康. 水平方向上冰中受陷气泡形成和分布实验研究[J]. 化工学报, 2023, 74(S1): 161-164. |
[5] | 毕丽森, 刘斌, 胡恒祥, 曾涛, 李卓睿, 宋健飞, 吴翰铭. 粗糙界面上纳米液滴蒸发模式的分子动力学研究[J]. 化工学报, 2023, 74(S1): 172-178. |
[6] | 江河, 袁俊飞, 王林, 邢谷雨. 均流腔结构对微细通道内相变流动特性影响的实验研究[J]. 化工学报, 2023, 74(S1): 235-244. |
[7] | 袁佳琦, 刘政, 黄锐, 张乐福, 贺登辉. 泡状入流条件下旋流泵能量转换特性研究[J]. 化工学报, 2023, 74(9): 3807-3820. |
[8] | 高燕, 伍鹏, 尚超, 胡泽君, 陈晓东. 基于双流体喷嘴的磁性琼脂糖微球的制备及其蛋白吸附性能探究[J]. 化工学报, 2023, 74(8): 3457-3471. |
[9] | 邢雷, 苗春雨, 蒋明虎, 赵立新, 李新亚. 井下微型气液旋流分离器优化设计与性能分析[J]. 化工学报, 2023, 74(8): 3394-3406. |
[10] | 刘文竹, 云和明, 王宝雪, 胡明哲, 仲崇龙. 基于场协同和耗散的微通道拓扑优化研究[J]. 化工学报, 2023, 74(8): 3329-3341. |
[11] | 岳林静, 廖艺涵, 薛源, 李雪洁, 李玉星, 刘翠伟. 凹坑缺陷对厚孔板喉部空化流动特性影响研究[J]. 化工学报, 2023, 74(8): 3292-3308. |
[12] | 王海, 林宏, 王晨, 许浩洁, 左磊, 王军锋. 高压静电场强化多孔介质表面沸腾传热特性研究[J]. 化工学报, 2023, 74(7): 2869-2879. |
[13] | 高金明, 郭玉娇, 鄂承林, 卢春喜. 一种封闭罩内顺流多旋臂气液分离器的分离特性研究[J]. 化工学报, 2023, 74(7): 2957-2966. |
[14] | 何宣志, 何永清, 闻桂叶, 焦凤. 磁液液滴颈部自相似破裂行为[J]. 化工学报, 2023, 74(7): 2889-2897. |
[15] | 刘起超, 周云龙, 陈聪. 起伏振动垂直上升管气液两相流截面含气率分析与计算[J]. 化工学报, 2023, 74(6): 2391-2403. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||