[1] |
MONNET F. An Introduction to Anaerobic Digestion of Organic Wastes:Final Report[R]. Remade Scotland, 2003.
|
[2] |
BAE Y S, SNURR R Q. Development and evaluation of porous materials for carbon dioxide separation and capture[J]. Angewandte Chemie-International Edition, 2011, 50(49):11586-11596.
|
[3] |
孔祥明, 杨颖, 沈文龙, 等. CO2/CH4/N2在沸石13X-APG上的吸附平衡[J]. 化工学报, 2013, 64(6):2117-2124. KONG X M, YANG Y, SHEN W L, et al. Adsorption equilibrium of CO2, CH4, and N2 on zeolite 13X-APG[J]. CIESC Journal, 2013, 64(6):2117-2124.
|
[4] |
MORISHIGE K. Adsorption and separation of CO2/CH4 on amorphous silica molecular sieve[J]. Journal of Physical Chemistry C, 2011, 115(19):9713-9718.
|
[5] |
黄艳, 岳盈溢, 何靓, 等. 一种具有高CO吸附容量和高CO/N2及CO/CO2分离选择性的CuCl@β吸附剂[J]. 化工学报, 2015, 66(9):3556-3562. HUANG Y, YUE Y Y, HE L, et al. An efficient CuCl@β adsorbent with high CO adsorption uptake and CO/N2 and CO/CO2 selectivities[J]. CIESC Journal, 2015, 66(9):3556-3562.
|
[6] |
RIBEIRO R P, SAUER T P, LOPES F V, et al. Adsorption of CO2, CH4, and N2 in active carbon honeycomb monolith[J]. Journal of Chemical and Engineering Data, 2008, 53(10):2311-2317.
|
[7] |
SUMIDA K, ROGOW D L, MASON J A, et al. Carbon dioxide capture in metal-organic frameworks[J]. Chemical Reviews, 2012, 112(2):724-781.
|
[8] |
刘有毅, 黄艳, 何嘉杰, 等. CO/N2/CO2在MOF-74(Ni)上吸附相平衡和选择性[J]. 化工学报, 2015, 66(11):4469-4475. LIU Y Y, HUANG Y, HE J J, et al. Adsorption isotherms and selectivity of CO/N2/CO2 on MOF-74(Ni)[J]. CIESC Journal, 2015, 66(11):4469-4475.
|
[9] |
李玉洁, 苗晋朋, 孙雪娇, 等. 机械化学法合成金属有机骨架材料HKUST-1及其吸附苯性能[J].化工学报, 2015, 66(2):793-799. LI Y J, MIAO J P, SUN X J, et al. Mechano-chemical synthesis of HKUST-1 with high capacity of benzene adsorption[J].CIESC Journal, 2015, 66(2):793-799.
|
[10] |
HAMON L, JOLIMATRE E, PIRNGRUBER G D. CO2 and CH4 separation by adsorption using Cu-BTC metal-organic framework[J]. Industrial and Engineering Chemistry Research, 2010, 49(13):7497-7503.
|
[11] |
BRITT D, FURUKAWA H, WANG B, et al. Highly efficient separation of carbon dioxide by a metal-organic framework replete with open metal sites[J]. Proceedings of National Academy of Sciences of the United States of America, 2009, 106(49):20637-20640.
|
[12] |
ZHANG Z J, HUANG S S, XIAN S K, et al. Adsorption equilibrium and kinetics of CO2 on chromium terephthalate MIL-101[J]. Energy Fuels, 2011, 25:835-842.
|
[13] |
杨琰, 王莎, 张志娟, 等. 氨气改性的NH3@MIL-53(Cr)吸附CO2和CH4的性能[J]. 化工学报, 2014, 65(5):1759-1763. YANG Y, WANG S, ZHANG Z J, et al. CO2 and CH4 adsorption performance of modified MIL-53(Cr) via ammonia vapor[J]. CIESC Journal, 2014, 65(5):1759-1763.
|
[14] |
刘江, 吴玉芳, 许峰, 等. 温度对MOF-74(Ni)吸附分离丙烯丙烷机理和选择性的影响[J]. 化工学报, 2016, 67(5):1942-1948. LIU J, WU Y F, XU F, et al. Effects of temperature on adsorption mechanism and adsorption selectivity of C3H6 and C3H8 on MOF-74(Ni)[J]. CIESC Journal, 2016, 67(5):1942-1948.
|
[15] |
XIAN S K, PENG J J, ZHANG Z J, et al. Highly enhanced and weakened adsorption properties of two MOFs by water vapor for separation of CO2/CH4 and CO2/N2 binary mixtures[J]. Chemical Engineering Journal, 2015, 270:385-392.
|
[16] |
XIAN S K, XU F, ZHAO Z X, et al. A novel carbonized polydopamine(C-PDA) adsorbent with high CO2 adsorption capacity and water vapor resistance[J]. AIChE Journal, 2016, 62(10):3730-3738.
|
[17] |
XIAO Q, WEN J, GUO Y, et al. Synthesis, carbonization, and CO2 adsorption properties of phloroglucinol-melamine-formaldehyde polymeric nanofibers[J]. Industrial & Engineering Chemistry Research, 2016, 55(49):12667-12674.
|
[18] |
JALILOV A S, LI Y L, TIAN J, et al. Ultra-high surface area activated porous asphalt for CO2 capture through competitive adsorption at high pressures[J]. Advanced Energy Materials, 2017, 7(1):1600693.
|
[19] |
YUN K K, KIM G M, LEE J W. Highly porous N-doped carbons impregnated with sodium for efficient CO2 capture[J]. Journal of Materials Chemistry A, 2015, 3(20):10919-10927.
|
[20] |
WANG J, HEERWIG A, LOHE M R, et al. Fungi-based porous carbons for CO2 adsorption and separation[J]. Journal of Materials Chemistry, 2012, 22(28):13911-13913.
|
[21] |
WANG J, LIN Y, YUE Q, et al. N-rich porous carbon with high CO2 capture capacity derived from polyamine-incorporated metal-organic framework materials[J]. RSC Advances, 2016, 6(58):53017-53024.
|
[22] |
SUN X M, LI Y D. Colloidal carbon spheres and their core/shell structures with noble-metal nanoparticles[J]. Angewandte Chemie-Internation Edition, 2004, 43(5):597-601.
|
[23] |
CHANG B, GUAN D, TIAN Y, et al. Convenient synthesis of porous carbon nanospheres with tunable pore structure and excellent adsorption capacity[J]. Journal of Hazardous Material, 2013, 262(8):256-264.
|
[24] |
XU L, GUO L, HU G, et al. Nitrogen-doped porous carbon spheres derived from d-glucose as highly-efficient CO2 sorbents[J]. RSC Advances, 2015, 5(48):37964-37969.
|
[25] |
SEVILLE M, PARRA J B, FUERTAE A B. Assessment of the role of micropore size and N-doping in CO2 capture by porous carbons[J]. ACS Applied Materials Interfaces, 2013, 5(13):6360-6368.
|
[26] |
WICKRAMANARTNE N P, JARONIEC M. Importance of small micropores in CO2 capture by phenolic resin-based activated carbon spheres[J]. Journal of Materials Chemistry A, 2013, 1(1):112-116.
|
[27] |
WEI H R, DENG S B, HU B Y, et al. Granular bamboo-derived activated carbon for high CO2 adsorption:the dominant role of narrow micropores[J]. ChemSusChem, 2012, 5(12):2354-2360.
|
[28] |
BAO Z B, YU L, REN Q L, et al. Adsorption of CO2 and CH4 on a magnesium-based metal organic framework[J]. Journal of Colloid and Interface Science, 2011, 353(2):549-556.
|
[29] |
LI J M, YANG J F, LI L B, et al. Separation of CO2/CH4 and CH4/N2 mixtures using MOF-5 and Cu3(BTC)2[J]. Journal of Energy Chemistry, 2014, 23(4):453-460.
|
[30] |
HU Z, FAUCHER S, ZHUO Y, et al. Combination of optimization and metalated-ligand exchange:an effective approach to functionalize UiO-66(Zr) MOFs for CO2 separation[J]. Chemistry, 2015, 21(48):17246-17255.
|
[31] |
ZHOU Z Y, MEI L, MA C, et al. A novel bimetallic MIL-101(Cr, Mg) with high CO2 adsorption capacity and CO2/N2 selectivity[J]. Chemical Engineering Science, 2016, 147:109-117.
|
[32] |
MEI L, JIANG T, ZHOU X, et al. A novel DOBDC-functionalized MIL-100(Fe) and its enhanced CO2 capacity and selectivity[J]. Chemical Engineering Journal, 2017, 321:600-607.
|
[33] |
HE Y, XIANG S, ZHANG Z, et al. A microporous metal-organic framework assembled from an aromatic tetracarboxylate for H2 purification[J]. Journal of Materials Chemistry A, 2013, 1(7):2543-2551.
|
[34] |
ZHU Y L, LONG H, ZHANG W. Imine-linked porous polymer frameworks with high small gas(H2, CO2, CH4, C2H2) uptake and CO2/N2 selectivity[J]. Chemistry of Materials, 2013, 25(9):1630-1635.
|
[35] |
WANG J, KRISHNA R, WU X F, et al. Polyfuran-derived microporous carbons for enhanced adsorption of CO2 and CH4[J]. Langmuir, 2015, 31(36):9845-9852.
|
[36] |
YANG J, YUE L M, HU X, et al. Efficient CO2 capture by porous carbons derived from coconut shell[J]. Energy Fuels, 2017, 31(4):4287-4293.
|
[37] |
GUO L P, YANG J, HU G S, et al. Role of hydrogen peroxide preoxidizing on CO2 adsorption of nitrogen-doped carbons produced from coconut shell[J]. ACS Sustainable Chemistry & Engineering, 2016, 4(5):2806-2813.
|
[38] |
CHANDRA V, YU S U, KIM S H, et al. Highly selective CO2 capture on N-doped carbon produced by chemical activation of polypyrrole functionalized graphene sheets[J]. Chemical Communications, 2012, 48(5):735-737.
|
[39] |
ROQUEROL F, ROQUEROL J, SING K. Adsorption by Powders and Solids:Principles, Methodology, and Applications[M]. London:Academic Press, 1999:165-187.
|
[40] |
MYERS A L, PRAUSNITZ J M. Thermodynamics of mixed-gas adsorption[J]. AIChE Journal, 1965, 11:121-127.
|
[41] |
RUTHVEN D M. Principles of Adsorption and Adsorption Processes[M]. New York:Wiley, 1984:168-179.
|
[42] |
RUTHVEN D M. Pressure Swing Adsorption[M]//FAROOQ S, KNAEBEL K S. New York:Wiley-VCH, 1994:352.
|