化工学报 ›› 2019, Vol. 70 ›› Issue (11): 4298-4305.DOI: 10.11949/0438-1157.20190344
收稿日期:
2019-04-03
修回日期:
2019-06-13
出版日期:
2019-11-05
发布日期:
2019-11-05
通讯作者:
怀英
作者简介:
怀英(1976—),女,博士,研究员,基金资助:
Ying HUAI(),Shuqin JIA,Kenan WU,Xi CHEN
Received:
2019-04-03
Revised:
2019-06-13
Online:
2019-11-05
Published:
2019-11-05
Contact:
Ying HUAI
摘要:
高能化学激光是利用大量化学物质的原子受激辐射产生发光现象,为了合理解析这种过程,构建了多物理模型耦合计算体系,所构建的数值模拟体系包含了流场-化学场计算模块、光场计算模块和热-结构计算模块。三种物理过程强烈的时间尺度反差给多物理场耦合计算带来了困难,因而提出了非同步多时间尺度耦合策略,使全三维、高分辨率大尺度化学激光的模拟成为可能,以氧碘化学激光为例,数值解析了超音速化学氧碘激光器流动、光场演变及腔镜系统内各光学元件在激光辐照下的热力学过程,计算结果能直接反映激光器包括功率和光束质量等最为重要的性能指标,是实现高能激光关键问题辨析和优化设计的重要工具。
中图分类号:
怀英, 贾淑芹, 吴克难, 陈曦. 高能化学激光多物理场耦合数值模拟[J]. 化工学报, 2019, 70(11): 4298-4305.
Ying HUAI, Shuqin JIA, Kenan WU, Xi CHEN. High-energy chemical laser multiphysics coupling numerical simulation[J]. CIESC Journal, 2019, 70(11): 4298-4305.
主流 | 辅流 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
压力/Pa | 温度/K | 质量分数/% | 压力/Pa | 温度/K | 质量分数/% | |||||
O2(3Σ) | O2(1Δ) | H2O | Cl2 | N2 | I2 | N2 | ||||
3500 | 250 | 22 | 30 | 8 | 15 | 25 | 10000 | 400 | 30 | 70 |
表1 流场边界条件
Table 1 Boundary conditions of flow calculation
主流 | 辅流 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
压力/Pa | 温度/K | 质量分数/% | 压力/Pa | 温度/K | 质量分数/% | |||||
O2(3Σ) | O2(1Δ) | H2O | Cl2 | N2 | I2 | N2 | ||||
3500 | 250 | 22 | 30 | 8 | 15 | 25 | 10000 | 400 | 30 | 70 |
1 | Wolfrum J R , Gross W F . Bott J F. Handbook of Chemical Lasers [M]. Wiley and Sons, 1976. |
2 | Davis S J , Lilenfeld H V , Neumann D K , et al . Chemical oxygen-iodine laser: US4653062[P]. 1987-03-24. |
3 | Endo M , Nagatomo S , Takeda S , et al . High-efficiency operation of chemical oxygen-iodine laser using nitrogen as buffer gas[J]. IEEE Journal of Quantum Electronics, 1998, 34(3):393-398. |
4 | Rittenhouse T L , Phipps S P , Helms C A . Performance of a high-efficiency 5-cm gain length supersonic chemical oxygen-iodine laser[J]. IEEE Journal of Quantum Electronics, 1999, 35(6):857-866. |
5 | Zhang Y , Sang F , Zhang P , et al . Multikilowatt chemical oxygen-iodine laser with chemical generation of molecular iodine [J]. Applied Physics Letters, 2007, 91(1): 101-110. |
6 | Endo M , Masuda T , Uchiyama T . Development of hybrid simulation for supersonic chemical oxygen-iodine laser [J]. AIAA Journal, 2007, 45(1): 90-97. |
7 | Miller J , Shang J , Paschkewitz J , et al. parallel A , unstructured flow solver for chemically reacting COIL flowfields [C]//Aerospace Sciences Meeting & Exhibit. Grapevine, Texas, USA, 2013. |
8 | Noren C , Vorobieff P , Truman C R , et al . Mixing in a supersonic COIL laser: influence of trip jets [J]. Experiments in Fluids, 2011, 50(2): 443-455. |
9 | Huai Y , Jia S , Jin Y . Analysis and optimization of mixing process with large eddy simulation: an application to SCOIL [R]. AIAA Plasmadynamics and Lasers Conference, San Antonio, Texas, 2009: 4062-4066. |
10 | Perram G P , Hager G D . The standard chemical oxygen-iodine laser kinetics package [R]. Kirtland AFB, USA: Air Force Weapons Lab., 1988. |
11 | Yang T , Copeland D , Bauer A , et al . Chemical oxygen-iodine laser performance modeling[C]//AIAA Plasmadynamics and Lasers Conference, San Francisco, USA, 2006. |
12 | Sziklas E A , Siegman A E . Mode calculations in unstable resonators with flowing saturable gain(2): Fast Fourier transform method [J]. Applied Optics, 1975, 14(8): 1874-1889. |
13 | Barmashenko B D . Analysis of lasing in chemical oxygen-iodine lasers with unstable resonators using a geometric-optics model [J]. Applied Optics, 2009, 48(13): 2542-2550. |
14 | Hager G D , Helms C A , Truesdell K A , et al . A simplified analytic model for gain saturation and power extraction in the flowing chemical oxygen-iodine laser [J]. IEEE Journal of Quantum Electronics, 1996, 79(9): 1525-1536. |
15 | 吴克难, 贾淑芹, 怀英, 等 . 超音速化学氧碘激光器内流动与光能提取耦合仿真[J]. 强激光与粒子束, 2011, 23(8): 267-271. |
Wu K N , Jia S Y , Huai Y , et al . Coupled simulation of flow and optical fields in supersonic chemical oxygen-iodine lasers[J]. High Power Laser and Particle Beams, 2011, 23(8): 267-271. | |
16 | Sziklas E A , Siegman A E . Diffraction calculations using fast Fourier transform methods[C]// Proceedings of the IEEE, 1974, 62(3):410-412. |
17 | Plotnikov P I , Sokolowski J . Compressible Navier-Stokes Equations [M]. Basel: Springer, 2012. |
18 | Iannelli J . An exact non‐linear Navier–Stokes compressible‐flow solution for CFD code verification[J]. International Journal for Numerical Methods in Fluids, 2013, 72(2): 157-176. |
19 | Buttay R , Gomet L , Lehnasch G , et al . Highly resolved numerical simulation of combustion downstream of a rocket engine igniter [J]. Shock Waves, 2017, 27(4): 1-20. |
20 | Wu K , Huai Y , Jia S , et al . Coupled simulation of chemical lasers based on intracavity partially coherent light model and 3D CFD model.[J]. Optics Express, 2011, 19(27): 262-275. |
21 | Liu J . Numerical solution of forward and backward problem for 2-D heat conduction equation [J]. Journal of Computational & Applied Mathematics, 2002, 145(2): 459-482. |
22 | Wang Z , Sang F , Zhang Y , et al . An experimental research on the mixing process of supersonic oxygen-iodine parallel streams [J]. Optics & Laser Technology, 2014, 64: 53-63. |
23 | Yoshida S , Endo M , Sawano T , et al . Chemical oxygen iodine laser of extremely high efficiency [J]. Journal of Applied Physics, 1989, 65(2): 870-872. |
24 | Blayvas I , Barmashenko B D , Furman D , et al . Power optimization of small-scale chemical oxygen-iodine laser with jet-type singlet oxygen generator [J]. IEEE Journal of Quantum Electronics, 1996, 32(12): 2051-2057. |
25 | Iparraguirre I . Transient mode-beating in confocal unstable passive resonators [J]. Optics Communications, 1992, 91(3/4):218-222. |
26 | Gluck P . Easy demonstration of the Poisson spot[J]. Physics Education, 2010, 45(5): 458-459. |
27 | Villafranca A B , Saravanamuttu K . Diffraction rings due to spatial self-phase modulation in a photopolymerizable medium [J]. Journal of Optics A: Pure and Applied Optics, 2009, 11(12):125-202. |
28 | Gottlieb S , Shu C W . Total variation diminishing Runge-Kutta schemes [J]. Mathematics of Computation, 1998, 67(221): 73-85. |
29 | Chai T , Draxler R R . Root mean square error (RMSE) or mean absolute error (MAE) [J]. Geoscientific Model Development, 2014, 7(3): 1247-1250. |
30 | Tatebe O , Nagashima U , Sekiguchi S , et al. Design and implementation of FMPL , a fast message-passing library for remote memory operations[C]// Supercomputing, Proceedings of ACM/IEEE Joint Conference on Digital Libraries, Roanoke, Virginia, USA, 2001. |
[1] | 杨欣, 王文, 徐凯, 马凡华. 高压氢气加注过程中温度特征仿真分析[J]. 化工学报, 2023, 74(S1): 280-286. |
[2] | 宋嘉豪, 王文. 斯特林发动机与高温热管耦合运行特性研究[J]. 化工学报, 2023, 74(S1): 287-294. |
[3] | 张思雨, 殷勇高, 贾鹏琦, 叶威. 双U型地埋管群跨季节蓄热特性研究[J]. 化工学报, 2023, 74(S1): 295-301. |
[4] | 张化福, 童莉葛, 张振涛, 杨俊玲, 王立, 张俊浩. 机械蒸汽压缩蒸发技术研究现状与发展趋势[J]. 化工学报, 2023, 74(S1): 8-24. |
[5] | 宋瑞涛, 王派, 王云鹏, 李敏霞, 党超镔, 陈振国, 童欢, 周佳琦. 二氧化碳直接蒸发冰场排管内流动沸腾换热数值模拟分析[J]. 化工学报, 2023, 74(S1): 96-103. |
[6] | 周绍华, 詹飞龙, 丁国良, 张浩, 邵艳坡, 刘艳涛, 郜哲明. 短管节流阀内流动噪声的实验研究及降噪措施[J]. 化工学报, 2023, 74(S1): 113-121. |
[7] | 叶展羽, 山訸, 徐震原. 用于太阳能蒸发的折纸式蒸发器性能仿真[J]. 化工学报, 2023, 74(S1): 132-140. |
[8] | 张义飞, 刘舫辰, 张双星, 杜文静. 超临界二氧化碳用印刷电路板式换热器性能分析[J]. 化工学报, 2023, 74(S1): 183-190. |
[9] | 王志国, 薛孟, 董芋双, 张田震, 秦晓凯, 韩强. 基于裂隙粗糙性表征方法的地热岩体热流耦合数值模拟与分析[J]. 化工学报, 2023, 74(S1): 223-234. |
[10] | 王玉兵, 李杰, 詹宏波, 朱光亚, 张大林. R134a在菱形离散肋微小通道内的流动沸腾换热实验研究[J]. 化工学报, 2023, 74(9): 3797-3806. |
[11] | 何松, 刘乔迈, 谢广烁, 王斯民, 肖娟. 高浓度水煤浆管道气膜减阻两相流模拟及代理辅助优化[J]. 化工学报, 2023, 74(9): 3766-3774. |
[12] | 邢雷, 苗春雨, 蒋明虎, 赵立新, 李新亚. 井下微型气液旋流分离器优化设计与性能分析[J]. 化工学报, 2023, 74(8): 3394-3406. |
[13] | 韩晨, 司徒友珉, 朱斌, 许建良, 郭晓镭, 刘海峰. 协同处理废液的多喷嘴粉煤气化炉内反应流动研究[J]. 化工学报, 2023, 74(8): 3266-3278. |
[14] | 程小松, 殷勇高, 车春文. 不同工质在溶液除湿真空再生系统中的性能对比[J]. 化工学报, 2023, 74(8): 3494-3501. |
[15] | 刘文竹, 云和明, 王宝雪, 胡明哲, 仲崇龙. 基于场协同和![]() |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 163
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 485
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||