化工学报 ›› 2019, Vol. 70 ›› Issue (5): 1713-1722.DOI: 10.11949/j.issn.0438-1157.20181269
冯能莲1(),马瑞锦1,陈龙科2,董士康1,王小凤3,张星宇3
收稿日期:
2018-10-29
修回日期:
2019-01-25
出版日期:
2019-05-05
发布日期:
2019-05-05
通讯作者:
冯能莲
作者简介:
冯能莲(1962—),男,博士,教授,<email>fengnl@bjut.edu.cn</email>
基金资助:
Nenglian FENG1(),Ruijin MA1,Longke CHEN2,Shikang DONG1,Xiaofeng WANG3,Xingyu ZHANG3
Received:
2018-10-29
Revised:
2019-01-25
Online:
2019-05-05
Published:
2019-05-05
Contact:
Nenglian FENG
摘要:
为了维持动力电池的性能、延长其使用寿命,应使电池模块工作过程中的温度和温差维持在适宜的范围之内。为此,提出一种新型蜂巢式液冷动力电池模块,该结构内部设有进/出口导流板且电池呈蜂巢式分布,冷却液体与电池呈360°间接接触,极大强化了换热效果。在单体电池热特性数值模拟与试验验证的基础上,通过计算流体力学平台建立新型蜂巢式液冷电池模块模型,研究了电池模块的热行为,分析了冷却液流量、冷却液温度对电池模块传热性能的影响。结果表明:(1)增加冷却液流量可显著降低电池模块最高温度,改善温度均匀性,当冷却液流量增加到1.5 L/min之后,电池模块最高温度及最大温差趋于稳定;(2)冷却液温度的降低可显著降低电池模块中最高温度,但在一定程度上恶化了模块中的温度均匀性;(3)冷却液流量和温度对电池模块的加热特性影响显著。因此,采用液冷方式是必要的。
中图分类号:
冯能莲, 马瑞锦, 陈龙科, 董士康, 王小凤, 张星宇. 新型蜂巢式液冷动力电池模块传热特性研究[J]. 化工学报, 2019, 70(5): 1713-1722.
Nenglian FENG, Ruijin MA, Longke CHEN, Shikang DONG, Xiaofeng WANG, Xingyu ZHANG. Heat transfer characteristics of honeycomb liquid-cooled power battery module[J]. CIESC Journal, 2019, 70(5): 1713-1722.
材料 | ρ/(kg/m3) | cp /(J/(kg·K)) | k/(W/(m·K)) |
---|---|---|---|
铝合金 | 2700 | 880 | 193 |
空气 | 1.225 | 1006.43 | 0.0242 |
冷却液 | 1073.35 | 3291 | 0.38 |
电池 | 2804.7 | 950 | 2/2/15 |
表1 M60主要材料物性参数
Table 1 Physical properties of M60's main materials
材料 | ρ/(kg/m3) | cp /(J/(kg·K)) | k/(W/(m·K)) |
---|---|---|---|
铝合金 | 2700 | 880 | 193 |
空气 | 1.225 | 1006.43 | 0.0242 |
冷却液 | 1073.35 | 3291 | 0.38 |
电池 | 2804.7 | 950 | 2/2/15 |
1 | Greco A , Jiang X , Cao D P . An investigation of lithium-ion battery thermal management using paraffin/porous-graphite-matrix composite[J]. Journal of Power Sources, 2015, 278: 50-68. |
2 | Ling Z Y , Zhang Z G , Shi G Q , et al . Review on thermal management systems using phase change materials for electronic components, Li-ion batteries and photovoltaic modules[J]. Renew. Sustain. Energy Rev., 2014, 31: 427-438. |
3 | Zhao J T , Rao Z H , Huo Y T , et al . Thermal management of cylindrical power battery module for extending the life of new energy electric vehicles[J]. Appl. Therm. Eng., 2015, 85: 33-43. |
4 | Malik M , Dincer I , Rosen M A . Review on use of phase change materials in battery thermal management for electric and hybrid electric vehicles[J]. Int. J. Energy Res., 2016, 40(8): 1011-1031. |
5 | Chacko S , Chung Y M . Thermal modeling of Li-ion polymer battery for electric vehicle drive cycles[J]. Journal of Power Sources, 2012, 213(9): 296-303. |
6 | Liu R , Chen J X , Xun J Z , et al . Numerical investigation of thermal behaviors in lithium-ion battery stack discharge[J]. Appl. Energy, 2014, 132: 288-97. |
7 | Manzetti S , Mariasiu F . Electric vehicle battery technologies: from present state to future systems[J]. Renew. Sustain. Energy Rev., 2015, 51: 1004-1012. |
8 | Shah K , Chalise D , Jain A . Experimental and theoretical analysis of a method to predict thermal runaway in Li-ion cells[J]. Journal of Power Sources, 2016, 330: 167-174. |
9 | Wilke S , Schweitzer B , Khateeb S , et al . Preventing thermal runaway propagation in lithium ion battery packs using a phase change composite material: an experimental study[J]. Journal of Power Sources, 2017, 340: 51-59. |
10 | Wang H , Lara-Curzio E , Rule E T , et al . Winchester, mechanical abuse simulation and thermal runaway risks of large-format Li-ion batteries[J]. Journal of Power Sources, 2017, 342: 913-920. |
11 | Pesaran A A . Battery thermal management in EVs and HEVs: issues and solutions[C]//Advanced Automotive Battery Conference. Nevada, 2001. |
12 | Klein M , Tong S , Park J W . In-plane nonuniform temperature effects on the performance of a large-format lithium-ion pouch cell[J]. Appl. Energy, 2016, 165: 639-647. |
13 | Zhao C R , Cao W J , Dong T , et al . Thermal behavior study of discharging/charging cylindrical lithium-ion battery module cooled by channeled liquid flow[J]. International Journal of Heat and Mass Transfer, 2018, 120: 751-762. |
14 | Liu Z , Wang Y , Zhang J , et al . Shortcut computation for the thermal management of a large air-cooled battery pack[J]. Appl. Therm. Eng., 2014, 66: 445-452. |
15 | Xu X M , He R . Review on the heat dissipation performance of battery pack with different structures and operation conditions[J]. Renew. Sustain. Energy Rev., 2014, 29: 301-315. |
16 | Yu K , Yang X , Cheng Y , et al . Thermal analysis and two-directional air flow thermal management for lithium-ion battery pack [J]. Journal of Power Sources, 2014, 270: 193-200. |
17 | Chen D F , Jiang J C , Kim G H , et al . Comparison of different cooling methods for lithium ion battery cells[J]. Appl. Therm. Eng., 2016, 94: 846-854. |
18 | Rao Z H , Wang S F , Zhang Y L . Thermal management with phase change material for a power battery under cold temperatures[J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2014, 36(20): 2287-2295. |
19 | Duan X , Naterer G F . Heat transfer in phase change materials for thermal management of electric vehicle battery modules[J]. International Journal of Heat and Mass Transfer, 2010, 53(23/24): 5176-5182. |
20 | Javani N , Dincer I , Naterer G F , et al . Heat transfer and thermal management with PCMs in a Li-ion battery cell for electric vehicles[J]. Int. J. Heat Mass Transf., 2014, 72: 690-703. |
21 | Lin C J , Xu S C , Chang G F , et al . Experiment and simulation of a LiFePO4 battery pack with a passive thermal management system using composite phase change material and graphite sheets[J]. Journal of Power Sources, 2015, 275: 742-749. |
22 | Nelson P , Dees D , Amine K , et al . Modeling thermal management of lithium-ion PNGV batteries[J]. Journal of Power Sources, 2002, 110(2): 349-356. |
23 | Zhang T S , Gao C , Gao Q , et al . Status and development of electric vehicle integrated thermal management from BTM to HVAC[J]. Appl. Therm. Eng., 2015, 88: 398-409. |
24 | Chen D , Jiang J , Kim G H , et al . Comparison of different cooling methods for lithium ion battery cells[J]. Appl. Therm. Eng., 2016, 94: 846-854. |
25 | Yuan H , Wang L F . Battery thermal management system with liquid cooling and heating in electric vehicles[J]. J. Automotive Safety and Energy, 2012, 3(4): 371-380. |
26 | Liu R , Chen J X , Xun J Z , et al . Numerical investigation of thermal behaviors in lithium-ion battery stack discharge[J]. Applied Energy, 2014, 132: 288-297. |
27 | Jarrett A , Kim I Y . Influence of operating conditions on the optimum design of electric vehicle battery cooling plates[J]. Journal of Power Sources, 2014, 245: 644-655. |
28 | Adams D , Berdichevsky E , Colson T , et al . Battery pack thermal management system: US2009/0023056A1[P]. 2009-01-22. |
29 | 安徽新能科技有限公司 . 一种用于新能源电动汽车中冷却箱的焊接: 106181082A[P]. 2016-07-10. |
Anhui Xinen Technology Company . A welding method for cooling box of new energy electric vehicle: 106181082A[P]. 2016-07-10. | |
30 | Nishi Y . Lithium ion batteries: past 10 years and the future[J]. Journal of Power Sources, 2001, 100: 101-106. |
31 | Chen S C , Wan C C , Wang Y Y . Thermal analysis of lithium-ion batteries[J]. Journal of Power Sources, 2005, 140: 111-124. |
32 | Saw L H , Ye Y H , Tay A A O . Electrochemical–thermal analysis of 18650 lithium iron phosphate cell[J]. Energy Convers. Manage., 2013, 75: 162-174. |
33 | Emre G , Özgür E , Murat K . 3-D CFD modeling and experimental testing of thermal behavior of a Li-ion battery[J]. Applied Thermal Engineering, 2017, 120: 484-495. |
[1] | 叶展羽, 山訸, 徐震原. 用于太阳能蒸发的折纸式蒸发器性能仿真[J]. 化工学报, 2023, 74(S1): 132-140. |
[2] | 张义飞, 刘舫辰, 张双星, 杜文静. 超临界二氧化碳用印刷电路板式换热器性能分析[J]. 化工学报, 2023, 74(S1): 183-190. |
[3] | 王志国, 薛孟, 董芋双, 张田震, 秦晓凯, 韩强. 基于裂隙粗糙性表征方法的地热岩体热流耦合数值模拟与分析[J]. 化工学报, 2023, 74(S1): 223-234. |
[4] | 宋嘉豪, 王文. 斯特林发动机与高温热管耦合运行特性研究[J]. 化工学报, 2023, 74(S1): 287-294. |
[5] | 张思雨, 殷勇高, 贾鹏琦, 叶威. 双U型地埋管群跨季节蓄热特性研究[J]. 化工学报, 2023, 74(S1): 295-301. |
[6] | 连梦雅, 谈莹莹, 王林, 陈枫, 曹艺飞. 地下水预热新风一体化热泵空调系统制热性能研究[J]. 化工学报, 2023, 74(S1): 311-319. |
[7] | 金正浩, 封立杰, 李舒宏. 氨水溶液交叉型再吸收式热泵的能量及分析[J]. 化工学报, 2023, 74(S1): 53-63. |
[8] | 李科, 文键, 忻碧平. 耦合蒸气冷却屏的真空多层绝热结构对液氢储罐自增压过程的影响机制研究[J]. 化工学报, 2023, 74(9): 3786-3796. |
[9] | 何松, 刘乔迈, 谢广烁, 王斯民, 肖娟. 高浓度水煤浆管道气膜减阻两相流模拟及代理辅助优化[J]. 化工学报, 2023, 74(9): 3766-3774. |
[10] | 王浩, 王振雷. 基于自适应谱方法的裂解炉烧焦模型化简策略[J]. 化工学报, 2023, 74(9): 3855-3864. |
[11] | 韩晨, 司徒友珉, 朱斌, 许建良, 郭晓镭, 刘海峰. 协同处理废液的多喷嘴粉煤气化炉内反应流动研究[J]. 化工学报, 2023, 74(8): 3266-3278. |
[12] | 于旭东, 李琪, 陈念粗, 杜理, 任思颖, 曾英. 三元体系KCl + CaCl2 + H2O 298.2、323.2及348.2 K相平衡研究及计算[J]. 化工学报, 2023, 74(8): 3256-3265. |
[13] | 诸程瑛, 王振雷. 基于改进深度强化学习的乙烯裂解炉操作优化[J]. 化工学报, 2023, 74(8): 3429-3437. |
[14] | 闫琳琦, 王振雷. 基于STA-BiLSTM-LightGBM组合模型的多步预测软测量建模[J]. 化工学报, 2023, 74(8): 3407-3418. |
[15] | 邢雷, 苗春雨, 蒋明虎, 赵立新, 李新亚. 井下微型气液旋流分离器优化设计与性能分析[J]. 化工学报, 2023, 74(8): 3394-3406. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||