化工学报 ›› 2019, Vol. 70 ›› Issue (7): 2480-2487.DOI: 10.11949/j.issn.0438-1157.20181341
收稿日期:
2018-11-15
修回日期:
2019-04-02
出版日期:
2019-07-05
发布日期:
2019-07-05
通讯作者:
吴慧英
作者简介:
高泽世(1986—),男,博士研究生,<email>gaozeshifx@sjtu.edu.cn</email>
基金资助:
Zeshi GAO(),Yuanpeng YAO,Huiying WU()
Received:
2018-11-15
Revised:
2019-04-02
Online:
2019-07-05
Published:
2019-07-05
Contact:
Huiying WU
摘要:
通过可视化实验研究了球内受空隙影响的石蜡(RT27)非约束融化过程,探讨了球直径、加热温度、初始温度以及相变材料(PCM)填充率对球内非约束融化特性的影响。通过对PCM固液界面演化、固相运动等融化行为的观察发现,受球内空隙影响,非约束融化过程会出现固相PCM先漂浮后下沉的融化模式。进一步的量化结果表明:增大球直径,固相PCM漂浮时间先增大后减小,总融化时间则持续增大;提升加热温度和初始温度,固相PCM漂浮时间和总融化时间减小;增大PCM填充率,固相漂浮时间和总融化时间先增大后减小。最后,通过对实验数据的无量纲化分析,提出了无量纲总融化时间(受Rayleigh数、Stefan数、PCM填充率、无量纲初始温度影响)关系式。
中图分类号:
高泽世, 姚元鹏, 吴慧英. 球形容器内石蜡非约束融化特性实验[J]. 化工学报, 2019, 70(7): 2480-2487.
Zeshi GAO, Yuanpeng YAO, Huiying WU. Experiment on the unconstrained melting of paraffin in spherical containers[J]. CIESC Journal, 2019, 70(7): 2480-2487.
热物性参数 | 数值 |
---|---|
密度 (固相), ρs/(kg/m3) | 880 |
密度 (液相), ρl/(kg/m3) | 760 |
热导率 (固相), λs/(W/(m·℃)) | 0.24 |
热导率 (液相), λl/(W/(m·℃)) | 0.15 |
比热容 (固相), cs/(kJ/(kg·℃)) | 2.4 |
比热容 (液相), cl/(kJ/(kg·℃)) | 1.8 |
热膨胀系数 (液相), β/℃-1 | 5×10-4 |
运动黏度, ν/(m2/s) | 5×10-6 |
潜热, L/(kJ/kg) | 179 |
相变温度, Tm/℃ | 27 |
表1 RT27热物性参数[27]
Table 1 Thermophysical properties of RT27[27]
热物性参数 | 数值 |
---|---|
密度 (固相), ρs/(kg/m3) | 880 |
密度 (液相), ρl/(kg/m3) | 760 |
热导率 (固相), λs/(W/(m·℃)) | 0.24 |
热导率 (液相), λl/(W/(m·℃)) | 0.15 |
比热容 (固相), cs/(kJ/(kg·℃)) | 2.4 |
比热容 (液相), cl/(kJ/(kg·℃)) | 1.8 |
热膨胀系数 (液相), β/℃-1 | 5×10-4 |
运动黏度, ν/(m2/s) | 5×10-6 |
潜热, L/(kJ/kg) | 179 |
相变温度, Tm/℃ | 27 |
直径/mm | PCM质量,M0/g | 球壳质量/g |
---|---|---|
20.05 | 2.787 | 1.331 |
30.70 | 10.861 | 2.397 |
40.75 | 26.522 | 4.219 |
50.10 | 48.990 | 9.840 |
60.10 | 79.996 | 13.093 |
70.30 | 131.592 | 14.627 |
表2 球形容器样品
Table 2 Spherical container samples
直径/mm | PCM质量,M0/g | 球壳质量/g |
---|---|---|
20.05 | 2.787 | 1.331 |
30.70 | 10.861 | 2.397 |
40.75 | 26.522 | 4.219 |
50.10 | 48.990 | 9.840 |
60.10 | 79.996 | 13.093 |
70.30 | 131.592 | 14.627 |
参数 | 相对误差/% |
---|---|
Ra | 8 |
Ste | 2.8 |
Si | 2.8 |
Fo | 7.1 |
ε | 0.1 |
表3 无量纲参数相对误差汇总
Table 3 Errors of dimensionless parameters
参数 | 相对误差/% |
---|---|
Ra | 8 |
Ste | 2.8 |
Si | 2.8 |
Fo | 7.1 |
ε | 0.1 |
1 | ZalbaB, Marı́nJ M, CabezaL F, et al. Review on thermal energy storage with phase change: materials, heat transfer analysis and applications[J]. Applied Thermal Engineering, 2003, 23(3): 251-283. |
2 | NomuraT, AkiyamaT. High-temperature latent heat storage technology to utilize exergy of solar heat and industrial exhaust heat[J]. International Journal of Energy Research, 2017, 41(2): 240-251. |
3 | ReginA F, SolankiS C, SainiJ S. Heat transfer characteristics of thermal energy storage system using PCM capsules: a review[J]. Renewable and Sustainable Energy Reviews, 2008, 12(9): 2438-2458. |
4 | 李明广, 张洋, 李月锋, 等. 相变蓄热单元的研究进展[J]. 材料研究与应用, 2011, 5(2): 77-81. |
LiM G, ZhangY, LiY F, et al. Research survey of phase-change thermal storage monomer[J]. Materials Research and Application, 2011, 5(2): 77-81. | |
5 | 姜益强, 齐琦, 姚杨, 等. 圆柱形壳管式相变蓄热单元的蓄热特性研究[J]. 太阳能学报, 2008, 29(1): 29-34. |
JiangY Q, QiQ, YaoY, et al. Study on thermal storage performance of PCM-based cylinder shell-and-tube energy storage cell[J]. Acta Energiae Solaris Sinica, 2008, 29(1): 29-34. | |
6 | 高泽世, 吴慧英. 水平圆柱相变单元蓄放热动态特性研究[J]. 工程热物理学报, 2014, 35(12): 2452-2456. |
GaoZ S, WuH Y. Study on heat charging and discharging characteristics of a horizontal cylinder phase change unit[J]. Journal of Engineering Thermophysics, 2014, 35(12): 2452-2456. | |
7 | BouadilaS, FteïtiM, OueslatiM M, et al. Enhancement of latent heat storage in a rectangular cavity: solar water heater case study[J]. Energy Conversion and Management, 2014, 78: 904-912. |
8 | 胡春妍, 袁艳平, 曹晓玲, 等. 环形单元内月桂酸熔化过程的传热特性[J]. 化工学报, 2014, 65(S2): 71-77. |
HuC Y, YuanY P, CaoX L, et al. Mechanism of heat transfer during melting of lauric acid in horizontal annulus[J]. CIESC Journal, 2014, 65(S2): 71-77. | |
9 | LiW, WangY H, KongC C. Experimental study on melting/solidification and thermal conductivity enhancement of phase change material inside a sphere[J]. International Communications in Heat and Mass Transfer, 2015, 68: 276-282. |
10 | DhaidanN S, KhodadadiJ M. Melting and convection of phase change materials in different shape containers: a review[J]. Renewable and Sustainable Energy Reviews, 2015, 43: 449-477. |
11 | TanF L. Constrained and unconstrained melting inside a sphere[J]. International Communications in Heat and Mass Transfer, 2008, 35(4): 466-475. |
12 | FanL, ZhuZ, LiuM, et al. Heat transfer during constrained melting of nano-enhanced phase change materials in a spherical capsule: an experimental study[J]. Journal of Heat Transfer, 2016, 138(12): 122402. |
13 | 刘闵婕, 朱子钦, 许粲羚, 等. 球形容器内复合相变材料的约束熔化传热过程[J]. 浙江大学学报(工学版), 2016, 50(3): 477-484. |
LiuM J, ZhuZ Q, XuC L, et al. Constrained melting heat transfer of composite phase change materials inside spherical container[J]. Journal of Zhejiang University (Engineering Science), 2016, 50(3): 477-484. | |
14 | EttouneyH, AlatiqiI, Al-SahaliM, et al. Heat transfer enhancement in energy storage in spherical capsules filled with paraffin wax and metal beads[J]. Energy Conversion and Management, 2006, 47(2): 211-228. |
15 | 朱子钦, 肖胜蓝, 施松鹤, 等. 相变材料在含翅片球形容器内的约束熔化传热过程[J]. 科学通报, 2015, 60(12): 1125-1131. |
ZhuZ Q, XiaoS L, ShiS H, et al. Constrained melting heat transfer of a phase change material in a finned spherical capsule[J]. Chinese Science Bulletin, 2015, 60(12): 1125-1131. | |
16 | FanL W, ZhuZ Q, XiaoS L, et al. An experimental and numerical investigation of constrained melting heat transfer of a phase change material in a circumferentially finned spherical capsule for thermal energy storage[J]. Applied Thermal Engineering, 2016, 100: 1063-1075. |
17 | 姚元鹏,刘振宇,吴慧英.一种计算泡沫金属等效热导率的新模型[J].化工学报, 2014, 65(8):2921-2926. |
YaoY P, LiuZ Y, WuH Y. A new model for calculating effective thermal conductivity of metal foam[J]. CIESC Journal, 2014, 65(8):2921-2926. | |
18 | KhodadadiJ M, ZhangY. Effects of buoyancy-driven convection on melting within spherical containers[J]. International Journal of Heat and Mass Transfer, 2001, 44(8): 1605-1618. |
19 | TanF L, HosseinizadehS F, KhodadadiJ M, et al. Experimental and computational study of constrained melting of phase change materials (PCM) inside a spherical capsule[J]. International Journal of Heat and Mass Transfer, 2009, 52(15/16): 3464-3472. |
20 | VeerappanM, KalaiselvamS, IniyanS, et al. Phase change characteristic study of spherical PCMs in solar energy storage[J]. Solar Energy, 2009, 83(8): 1245-1252. |
21 | GalioneP A, LehmkuhlO, RigolaJ, et al. Fixed-grid numerical modeling of melting and solidification using variable thermo-physical properties-application to the melting of n-octadecane inside a spherical capsule[J]. International Journal of Heat and Mass Transfer, 2015, 86: 721-743. |
22 | SattariH, MohebbiA, AfsahiM M, et al. CFD simulation of melting process of phase change materials (PCMs) in a spherical capsule[J]. International Journal of Refrigeration, 2017, 73: 209-218. |
23 | 林琦, 王树刚, 王继红, 等. 球形胶囊内约束熔化过程的LBM模拟[J]. 化工学报, 2018, 69(6): 2373-2379. |
LinQ, WangS G, WangJ H, et al. Numerical simulation of constrained melting inside spherical capsule by lattice Boltzmann method[J]. CIESC Journal, 2018, 69(6): 2373-2379. | |
24 | AminN A M, BrunoF, BeluskoM. Effective thermal conductivity for melting in PCM encapsulated in a sphere[J]. Applied Energy, 2014, 122: 280-287. |
25 | LiaoZ, XuC, RenY, et al. A novel effective thermal conductivity correlation of the PCM melting in spherical PCM encapsulation for the packed bed TES system[J]. Applied Thermal Engineering, 2018, 135: 116-122. |
26 | MooreF E, BayazitogluY. Melting within a spherical enclosure[J]. Journal of Heat Transfer, 1982, 104(1): 19-23. |
27 | AssisE, KatsmanL, ZiskindG, et al. Numerical and experimental study of melting in a spherical shell[J]. International Journal of Heat and Mass Transfer, 2007, 50(9/10): 1790-1804. |
28 | 张鲁燕, 郝学军, 宋孝春, 等. 蓄冷冰球非固定融化的数值模拟[J]. 区域供热, 2018,(1): 92-97. |
ZhangL Y, HaoX J, SongX C, et al. Numerical simulation on the process of ambulatory melting in storage sphere[J]. District Heating, 2018,(1): 92-97. | |
29 | HosseinizadehS F, Rabienataj DarziA A, TanF L, et al. Unconstrained melting inside a sphere[J]. International Journal of Thermal Sciences, 2013, 63: 55-64. |
30 | BlaneyJ J, NetiS, MisiolekW Z, et al. Containment capsule stresses for encapsulated phase change materials[J]. Applied Thermal Engineering, 2013, 50(1): 555-561. |
31 | AssisE, ZiskindG, LetanR. Numerical and experimental study of solidification in a spherical shell[J]. Journal of Heat Transfer, 2008, 131(2): 024502. |
32 | BondarevaN S, SheremetM A. 3D natural convection melting in a cubical cavity with a heat source[J]. International Journal of Thermal Sciences, 2017, 115: 43-53. |
[1] | 张双星, 刘舫辰, 张义飞, 杜文静. R-134a脉动热管相变蓄放热实验研究[J]. 化工学报, 2023, 74(S1): 165-171. |
[2] | 张义飞, 刘舫辰, 张双星, 杜文静. 超临界二氧化碳用印刷电路板式换热器性能分析[J]. 化工学报, 2023, 74(S1): 183-190. |
[3] | 陈爱强, 代艳奇, 刘悦, 刘斌, 吴翰铭. 基板温度对HFE7100液滴蒸发过程的影响研究[J]. 化工学报, 2023, 74(S1): 191-197. |
[4] | 刘明栖, 吴延鹏. 导光管直径和长度对传热影响的模拟分析[J]. 化工学报, 2023, 74(S1): 206-212. |
[5] | 王志国, 薛孟, 董芋双, 张田震, 秦晓凯, 韩强. 基于裂隙粗糙性表征方法的地热岩体热流耦合数值模拟与分析[J]. 化工学报, 2023, 74(S1): 223-234. |
[6] | 江河, 袁俊飞, 王林, 邢谷雨. 均流腔结构对微细通道内相变流动特性影响的实验研究[J]. 化工学报, 2023, 74(S1): 235-244. |
[7] | 吴延鹏, 刘乾隆, 田东民, 陈凤君. 相变材料与热管耦合的电子器件热管理研究进展[J]. 化工学报, 2023, 74(S1): 25-31. |
[8] | 晁京伟, 许嘉兴, 李廷贤. 基于无管束蒸发换热强化策略的吸附热池的供热性能研究[J]. 化工学报, 2023, 74(S1): 302-310. |
[9] | 程成, 段钟弟, 孙浩然, 胡海涛, 薛鸿祥. 表面微结构对析晶沉积特性影响的格子Boltzmann模拟[J]. 化工学报, 2023, 74(S1): 74-86. |
[10] | 宋瑞涛, 王派, 王云鹏, 李敏霞, 党超镔, 陈振国, 童欢, 周佳琦. 二氧化碳直接蒸发冰场排管内流动沸腾换热数值模拟分析[J]. 化工学报, 2023, 74(S1): 96-103. |
[11] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[12] | 王玉兵, 李杰, 詹宏波, 朱光亚, 张大林. R134a在菱形离散肋微小通道内的流动沸腾换热实验研究[J]. 化工学报, 2023, 74(9): 3797-3806. |
[13] | 李科, 文键, 忻碧平. 耦合蒸气冷却屏的真空多层绝热结构对液氢储罐自增压过程的影响机制研究[J]. 化工学报, 2023, 74(9): 3786-3796. |
[14] | 齐聪, 丁子, 余杰, 汤茂清, 梁林. 基于选择吸收纳米薄膜的太阳能温差发电特性研究[J]. 化工学报, 2023, 74(9): 3921-3930. |
[15] | 杨越, 张丹, 郑巨淦, 涂茂萍, 杨庆忠. NaCl水溶液喷射闪蒸-掺混蒸发的实验研究[J]. 化工学报, 2023, 74(8): 3279-3291. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||