化工学报 ›› 2020, Vol. 71 ›› Issue (10): 4553-4574.DOI: 10.11949/0438-1157.20200750
收稿日期:
2020-06-15
修回日期:
2020-07-22
出版日期:
2020-10-05
发布日期:
2020-10-05
通讯作者:
李静
作者简介:
张文静(1996—),女,博士研究生,基金资助:
Wenjing ZHANG(),Jing LI(),Zidong WEI
Received:
2020-06-15
Revised:
2020-07-22
Online:
2020-10-05
Published:
2020-10-05
Contact:
Jing LI
摘要:
燃料电池是将化学能转化成电能的装置,其空气电极催化层的设计,既要包含丰富的、易于接近的反应活性位,也要具备高度连通的电子、质子以及反应物、产物传质通道,因此电极必须具有特定三维几何结构形貌和有序分布的各功能化孔道,确保催化活性位得以充分利用以及反应可以连续进行。针对催化剂孔道的几何结构调控,本文调研了最近报道的一系列研究工作,从模板法、高温相变法、模板/相变复合方法以及基于金属有机框架材料进行孔道设计等四种主要方法出发,综述了该领域的最新研究进展。
中图分类号:
张文静, 李静, 魏子栋. 燃料电池空气电极的孔道结构调控[J]. 化工学报, 2020, 71(10): 4553-4574.
Wenjing ZHANG, Jing LI, Zidong WEI. Strategies for tuning porous structures of air electrode in fuel cells[J]. CIESC Journal, 2020, 71(10): 4553-4574.
1 | Borup R, Meyers J, Pivovar B, et al. Scientific aspects of polymer electrolyte fuel cell durability and degradation[J]. Chem. Rev., 2007, 107(10): 3904-3951. |
2 | Banham D, Ye S, Pei K, et al. A review of the stability and durability of non-precious metal catalysts for the oxygen reduction reaction in proton exchange membrane fuel cells[J]. J. Power Sources, 2015, 285(1): 334-348. |
3 | Rossi K, Asara G G, Baletto F. Structural screening and design of platinum nanosamples for oxygen reduction[J]. ACS Catal., 2020, 10(6): 3911-3920. |
4 | Egeblad K, Christensen C H, Kustova M, et al., Templating mesoporous zeolites[J]. Chem. Mater., 2008, 20(3): 946-960. |
5 | Groen, J C, Zhu W D, Brouwer S, et al. Direct demonstration of enhanced diffusion in mesoporous ZSM-5 zeolite obtained via controlled desilication[J]. J. Am. Chem. Soc., 2007, 129(2): 355-360. |
6 | Meng Y Y, Voiry D, Goswami A, et al. N-, O-, and S-tridoped nanoporous carbons as selective catalysts for oxygen reduction and alcohol oxidation reactions[J]. J. Am. Chem. Soc., 2014, 136(39): 13554-13557. |
7 | Wei Q, Cherif M, Zhang G, et al. Transforming reed waste into a highly active metal-free catalyst for oxygen reduction reaction[J]. Nano Energy, 2019, 62: 700-708. |
8 | Kim B N, Kang D, Cho S C, et al. Shorter dinucleotide repeat length in the DRD5 gene is associated with attention deficit hyperactivity disorder[J]. Psychiat. Genet., 2009, 19(1): 57. |
9 | Orilall M C, Wiesner U. Block copolymer based composition and morphology control in nanostructured hybrid materials for energy conversion and storage: solar cells, batteries, and fuel cells[J]. Chem. Soc. Rev., 2011, 40(2): 520-535. |
10 | Lee S, Choun M, Ye Y, et al. Designing a highly active metal-free oxygen reduction catalyst in membrane electrode assemblies for alkaline fuel cells: effects of pore size and doping-site position[J]. Angew. Chem. Int. Edit., 2015, 54(32): 9230-9234. |
11 | Chen J Z, Xu J L, Zhou S, et al. Nitrogen-doped hierarchically porous carbon foam: a free-standing electrode and mechanical support for high-performance supercapacitors[J]. Nano Energy, 2016, 25: 193-202. |
12 | Guo L, Jiang W J, Zhang Y, et al. Embedding Pt nanocrystals in N-doped porous carbon/carbon nanotubes toward highly stable electrocatalysts for the oxygen reduction reaction[J]. ACS Catal., 2015, 5(5): 2903-2909. |
13 | Takenaka S, Miyamoto H, Utsunomiya Y, et al. Catalytic activity of highly durable Pt/CNT catalysts covered with hydrophobic silica layers for the oxygen reduction reaction in PEFCs[J]. J. Phys. Chem. C, 2014, 118(2): 774-783. |
14 | Xu J, Zhao Y, Shen C, et al. Sulfur- and nitrogen-doped, ferrocene-derived mesoporous carbons with efficient electrochemical reduction of oxygen[J]. ACS Appl. Mater. Inter., 2013, 5(23): 12594-12601. |
15 | Zhang D, Hao Y, Zheng L, et al. Nitrogen and sulfur co-doped ordered mesoporous carbon with enhanced electrochemical capacitance performance[J]. J. Mater. Chem., 2013, 1(26): 7584-7591. |
16 | Chang Y, Hong F, Liu J, et al. Nitrogen/sulfur dual-doped mesoporous carbon with controllable morphology as a catalyst support for the methanol oxidation reaction[J]. Carbon, 2015, 87: 424-433. |
17 | Tian C, Tao W, Wang D J, et al. Synthesis of ordered large-pore mesoporous carbon for Cr(Ⅵ) adsorption[J]. Mater. Res. Bull., 2011, 46(9): 1424-1430. |
18 | Lin T, Chen I W, Liu F, et al. Nitrogen-doped mesoporous carbon of extraordinary capacitance for electrochemical energy storage[J]. Science, 2015, 350(6267): 1508-1513. |
19 | Lu J, Bo X, Wang H, et al. Nitrogen-doped ordered mesoporous carbons synthesized from honey as metal-free catalyst for oxygen reduction reaction[J]. Electrochim. Acta, 2013, 108(1): 10-16. |
20 | Zhang Y, Chen L, Meng Y, et al. Lithium and sodium storage in highly ordered mesoporous nitrogen-doped carbons derived from honey[J]. J. Power Sources, 2016, 335: 20-30. |
21 | Mane G P, Talapaneni S N, Anand C. Preparation of highly ordered nitrogen-containing mesoporous carbon from a gelatin biomolecule and its excellent sensing of acetic acid[J]. Adv. Funct. Mater., 2012, 22(17): 3596-3604. |
22 | Wang W, Luo J, Chen W, et al. Synthesis of mesoporous Fe/N/C oxygen reduction catalysts through NaCl crystallite-confined pyrolysis of polyvinylpyrrolidone[J]. J. Mater. Chem. A, 2016, 4(33): 12768-12773. |
23 | Liang Y, Liu H, Li Z, et al. In situ polydopamine coating-directed synthesis of nitrogen-doped ordered nanoporous carbons with superior performance in supercapacitors[J]. J. Mater. Chem., 2013, 1(48): 15207-15211. |
24 | Talapaneni S N, Mane G P, Park D, et al. Diaminotetrazine based mesoporous C3N6 with well-ordered 3D cubic structure and its excellent photocatalytic performance on hydrogen evolution[J]. J. Mater. Chem., 2017, 5(34): 18183-18192. |
25 | Lakhi K S S, Park D H, Singh G, et al. Energy efficient synthesis of highly ordered mesoporous carbon nitrides with uniform rods and their superior CO2 adsorption capacity[J]. J. Mater. Chem., 2017, 5(31): 16220-16230. |
26 | Yang Z, Yao Z, Li G, et al. Sulfur-doped graphene as an efficient metal-free cathode catalyst for oxygen reduction[J]. ACS Nano, 2012, 6(1): 205-211. |
27 | Ji L, Yan J, Jaroniec M, et al. Sulfur and nitrogen dual-doped mesoporous graphene electrocatalyst for oxygen reduction with synergistically enhanced performance[J]. Angew. Chem. Int. Ed. Engl., 2012, 51(46): 11808. |
28 | Pan F, Cao Z, Zhao Q, et al. Nitrogen-doped porous carbon nanosheets made from biomass as highly active electrocatalyst for oxygen reduction reaction[J]. J. Power Sources, 2014, 272: 8-15. |
29 | Zhao Y, Hu C, Hu Y, et al. A versatile, ultralight, nitrogen‐doped graphene framework[J]. Angew. Chem. Int. Ed. Engl., 2012, 51(45): 11371-11375. |
30 | Li Y, Zhou W, Wang H, et al. An oxygen reduction electrocatalyst based on carbon nanotube–graphene complexes[J]. Nat. Nanotechnol., 2012, 7(6): 394-400. |
31 | Xiong W, Du F, Liu Y, et al. Society, 3-D carbon nanotube structures used as high performance catalyst for oxygen reduction reaction[J]. J. Am. Chem. Soc., 2010, 132(45): 15839-15841. |
32 | Jin C, Nagaiah T C, Xia W, et al. Metal-free and electrocatalytically active nitrogen-doped carbon nanotubes synthesized by coating with polyaniline[J]. Nanoscale, 2010, 2(6): 981-987. |
33 | Wei W, Liang H, Parvez K, et al. Nitrogen-doped carbon nanosheets with size-defined mesopores as highly efficient metal-free catalyst for the oxygen reduction reaction[J]. Angew. Chem. Int. Ed. Engl., 2014, 53(6): 1570-1574. |
34 | Liang J, Du X, Gibson C, et al. N-doped graphene natively grown on hierarchical ordered porous carbon for enhanced oxygen reduction[J]. Adv. Mater., 2013, 25(43): 6226-6231. |
35 | Yang, D S, Bhattacharjya D, Inamdar S, et al. Phosphorus-doped ordered mesoporous carbons with different lengths as efficient metal-free electrocatalysts for oxygen reduction reaction in alkaline media[J]. J. Am. Chem. Soc., 2012, 134(39): 16127-16130. |
36 | Liu R, Wu D, Feng X, et al. Nitrogen doped ordered mesoporous graphitic arrays with high electrocatalytic activity for oxygen reduction[J]. Angew. Chem. Int. Edit., 2010, 122(14): 2565-2569. |
37 | Liang J, Zheng Y, Chen J, et al. Facile oxygen reduction on a three-dimensionally ordered macroporous graphitic C3N4/carbon composite electrocatalyst[J]. Angew. Chem. Int. Edit., 2012, 51(16): 3892-3896. |
38 | Yang X F, Wang A, Qiao B, et al. Single-atom catalysts: a new frontier in heterogeneous catalysis[J]. Accounts Chem. Res., 2013, 46(8): 1740-1748. |
39 | Li F, Shu H, Hu C, et al. Atomic mechanism of electrocatalytically active Co-N complexes in graphene basal plane for oxygen reduction reaction[J]. ACS Appl. Mater. Inter., 2015, 7(49): 27405-27413. |
40 | Shui J, Wang M, Du F, et al. N-doped carbon nanomaterials are durable catalysts for oxygen reduction reaction in acidic fuel cells[J]. Sci. Adv., 2015, 1(1): e1400129. |
41 | Mun Y, Kim M J, Park S A, et al. Soft-template synthesis of mesoporous non-precious metal catalyst with Fe-Nx/C active sites for oxygen reduction reaction in fuel cells[J]. Appl. Catal. B, 2018, 222: 191-199. |
42 | Wei Q, Zhang G, Yang X, et al. 3D porous Fe/N/C spherical nanostructures as high-performance electrocatalysts for oxygen reduction in both alkaline and acidic media[J]. ACS Appl. Mater. Inter., 2017, 9(42): 36944-36954. |
43 | Liang H, Wei W, Wu Z, et al. Mesoporous metal-nitrogen-doped carbon electrocatalysts for highly efficient oxygen reduction reaction[J]. J. Am. Chem. Soc., 2013, 135(43): 16002-16005. |
44 | Zhang J, Zhao Z, Xia Z, et al. A metal-free bifunctional electrocatalyst for oxygen reduction and oxygen evolution reactions[J]. Nat. Nanotechnol., 2015, 10(5): 444-452. |
45 | Sun T, Shan N, Xu L, et al. General synthesis of 3D ordered macro-/mesoporous materials by templating mesoporous silica confined in opals[J]. Chem. Mater., 2018, 30(5): 1617-1624. |
46 | Parlett C M, Wilson K, Lee A F. Hierarchical porous materials: catalytic applications[J]. Chem. Soc. Rev., 2013, 42(9): 3876-3893. |
47 | Song D, Naik A, Li S, et al. Rapid, large-area synthesis of hierarchical nanoporous silica hybrid films on flexible substrates[J]. J. Am. Chem. Soc., 2016, 138(41): 13473-13476. |
48 | Zuo X, Xia Y, Ji Q, et al. Self-templating construction of 3D hierarchical macro-/mesoporous silicon from 0D silica nanoparticles[J]. ACS Nano, 2017, 11(1): 889-899. |
49 | Lokupitiya H N, Jones A, Reid B, et al. Ordered mesoporous to macroporous oxides with tunable isomorphic architectures: solution criteria for persistent micelle templates[J]. Chem. Mater., 2016, 28(6): 1653-1667. |
50 | Zitolo A, Goellner V, Armel V, et al. Identification of catalytic sites for oxygen reduction in iron- and nitrogen-doped graphene materials[J]. Nat. Mater., 2015, 14(9): 937-942. |
51 | Fei H, Dong J, Feng Y, et al. General synthesis and definitive structural identification of MN4C4 single-atom catalysts with tunable electrocatalytic activities[J]. Nat. Catal., 2018, 1(1): 63-72. |
52 | Sun T, Zhao S, Chen W, et al. Single-atomic cobalt sites embedded in hierarchically ordered porous nitrogen-doped carbon as a superior bifunctional electrocatalyst[J]. P. Natl. Acad. Sci. USA, 2018, 115(50): 12692-12697. |
53 | Wang M J, Zhao T, Luo W, et al. Quantified mass transfer and superior antiflooding performance of ordered macro-mesoporous electrocatalysts[J]. AIChE J., 2018, 64(7): 2881-2889. |
54 | Wang H, Li W, Zhu Z, et al. Fabrication of an N-doped mesoporous bio-carbon electrocatalyst efficient in Zn-air batteries by an in situ gas-foaming strategy[J]. Chem. Commun., 2019, 55(100): 15117-15120. |
55 | Liu X, Antonietti M. Moderating black powder chemistry for the synthesis of doped and highly porous graphene nanoplatelets and their use in electrocatalysis[J]. Adv. Mater., 2013, 25(43): 6284-6290. |
56 | He W, Jiang C, Wang J, et al. High-rate oxygen electroreduction over graphitic-N species exposed on 3D hierarchically porous nitrogen-doped carbons[J]. Angew. Chem. Int. Ed. Engl., 2014, 53(36): 9503-9507. |
57 | Paraknowitsch J P, Thomas A. Doping carbons beyond nitrogen: an overview of advanced heteroatom doped carbons with boron, sulphur and phosphorus for energy applications[J]. Energ. Environ. Sci., 2013, 6(10): 2839-2855. |
58 | Zhang G, Luo H, Li H, et al. ZnO-promoted dechlorination for hierarchically nanoporous carbon as superior oxygen reduction electrocatalyst[J]. Nano Energy, 2016, 26: 241-247. |
59 | Tian P, Wang Y, Li W, et al. A salt induced gelatin crosslinking strategy to prepare Fe-N doped aligned porous carbon for efficient oxygen reduction reaction catalysts and high-performance supercapacitors[J]. J. Catal., 2020, 382: 109-120. |
60 | Li W, Ding W, Jiang J, et al. A phase-transition-assisted method for the rational synthesis of nitrogen-doped hierarchically porous carbon materials for the oxygen reduction reaction[J]. J. Mater. Chem. A, 2018, 6(3): 878-883. |
61 | Mao, Z X, Wang M J, Liu L, et al. ZnCl2 salt facilitated preparation of FeNC: enhancing the content of active species and their exposure for highly-efficient oxygen reduction reaction[J]. Chinese J. Catal., 2020, 41(5): 799-806. |
62 | Wang Y, Chen W, Nie Y, et al. Construction of a porous nitrogen-doped carbon nanotube with open-ended channels to effectively utilize the active sites for excellent oxygen reduction reaction activity[J]. Chem. Commun., 2017, 53(83): 11426-11429. |
63 | Muldoon P F, Liu C, Miller C C, et al. Programmable topology in new families of heterobimetallic metal-organic frameworks[J]. J. Am. Chem. Soc., 2018, 140(20): 6194-6198. |
64 | Wang H, Dong X, Lin J, et al. Topologically guided tuning of Zr-MOF pore structures for highly selective separation of C6 alkane isomers[J]. Nat. Commun., 2018, 9(1): 1745. |
65 | Zhang Y, Zhou H, Lin R, et al. Geometry analysis and systematic synthesis of highly porous isoreticular frameworks with a unique topology[J]. Nat.Commun., 2012, 3(1): 642. |
66 | Yang, S J, Kim T, Im J H, et al. MOF-derived hierarchically porous carbon with exceptional porosity and hydrogen storage capacity[J]. Chem. Mater., 2012, 24(3): 464-470. |
67 | Zhao R, Xia W, Lin C, et al. A pore-expansion strategy to synthesize hierarchically porous carbon derived from metal-organic framework for enhanced oxygen reduction[J]. Carbon, 2017, 114: 284-290. |
68 | Park J, Lee H, Bae Y E, et al. Dual-functional electrocatalyst derived from iron-porphyrin-encapsulated metal-organic frameworks[J]. ACS Appl. Mater. Inter., 2017, 9(34): 28758-28765. |
69 | Wang J, Wu G, Wang W, et al. A neural-network-like catalyst structure for the oxygen reduction reaction: carbon nanotube bridged hollow PtCo alloy nanoparticles in a MOF-like matrix for energy technologies[J]. J. Mater. Chem. A, 2019, 7(34): 19786-19792. |
70 | Li W, Ding W, Nie Y, et al. Transformation of metal-organic frameworks into huge-diameter carbon nanotubes with high performance in proton exchange membrane fuel cells[J]. ACS Appl. Mater. Inter., 2019, 11(25): 22290-22296. |
71 | Najam T, Shah S S, Ding W, et al. Enhancing by nano-engineering: hierarchical architectures as oxygen reduction/ evolution reactions for zinc-air batteries[J]. J. Power Sources, 2019, 438: 226919. |
72 | Ahn S H, Yu X, Manthiram A. “Wiring” Fe-Nx -embedded porous carbon framework onto 1D nanotubes for efficient oxygen reduction reaction in alkaline and acidic media[J]. Adv. Mater., 2017, 29(26): 1606534. |
73 | Wang M J, Mao Z X, Liu L, et al. Preparation of hollow nitrogen doped carbon via stresses induced orientation contraction[J]. Small, 2018, 14(52): e1804183. |
[1] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[2] | 陈哲文, 魏俊杰, 张玉明. 超临界水煤气化耦合SOFC发电系统集成及其能量转化机制[J]. 化工学报, 2023, 74(9): 3888-3902. |
[3] | 罗来明, 张劲, 郭志斌, 王海宁, 卢善富, 相艳. 1~5 kW高温聚合物电解质膜燃料电池堆的理论模拟与组装测试[J]. 化工学报, 2023, 74(4): 1724-1734. |
[4] | 钱志广, 樊越, 王世学, 岳利可, 王金山, 朱禹. 吹扫条件对PEMFC阻抗弛豫现象和低温启动的影响[J]. 化工学报, 2023, 74(3): 1286-1293. |
[5] | 郭祥, 乔金硕, 王振华, 孙旺, 孙克宁. 碳燃料固体氧化物燃料电池结构研究进展[J]. 化工学报, 2023, 74(1): 290-302. |
[6] | 雍加望, 赵倩倩, 冯能莲. 基于非线性动态模型的质子交换膜燃料电池故障诊断[J]. 化工学报, 2022, 73(9): 3983-3993. |
[7] | 张婉晨, 陈晓阳, 吕秋秋, 钟秦, 朱腾龙. Co掺杂SrTi0.3Fe0.7O3-δ 阳极SOFC在化工副产气燃料下的性能及稳定性[J]. 化工学报, 2022, 73(9): 4079-4086. |
[8] | 邵健, 冯军宗, 柳凤琦, 姜勇刚, 李良军, 冯坚. 酚醛树脂基炭微球结构调控与功能化制备研究进展[J]. 化工学报, 2022, 73(9): 3787-3801. |
[9] | 方辉煌, 程金星, 罗宇, 陈崇启, 周晨, 江莉龙. 氨电氧化催化剂及其低温直接氨碱性膜燃料电池性能的研究进展[J]. 化工学报, 2022, 73(9): 3802-3814. |
[10] | 张童, 杨扬, 叶丁丁, 陈蓉, 朱恂, 廖强. 催化剂分布对可渗透阳极微流体燃料电池性能特性影响的研究[J]. 化工学报, 2022, 73(9): 4156-4162. |
[11] | 艾承燚, 乔金硕, 王振华, 孙旺, 孙克宁. 原位析出纳米合金的PrBaFe2O6-δ 基阳极构筑及其在固体碳燃料电池中的应用研究[J]. 化工学报, 2022, 73(8): 3708-3719. |
[12] | 魏琳, 郭剑, 廖梓豪, Dafalla Ahmed Mohmed, 蒋方明. 空气流量对空冷燃料电池电堆性能的影响研究[J]. 化工学报, 2022, 73(7): 3222-3231. |
[13] | 张红锐, 张田, 隆曦孜, 李先宁. 光催化与微生物燃料电池耦合对Cu-EDTA的降解特性[J]. 化工学报, 2022, 73(5): 2149-2157. |
[14] | 李文怀, 周嵬. 高氧离子电导钙钛矿的影响因素分析和设计策略[J]. 化工学报, 2022, 73(4): 1455-1471. |
[15] | 郑克晴, 孙亚, 闫阳天, 李丽, 杨钧. 一种热电协同增强的固体氧化物燃料电池新型连接件的数值模拟[J]. 化工学报, 2022, 73(12): 5572-5580. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||