化工学报 ›› 2020, Vol. 71 ›› Issue (10): 4663-4673.DOI: 10.11949/0438-1157.20191292
收稿日期:
2019-10-30
修回日期:
2020-03-09
出版日期:
2020-10-05
发布日期:
2020-10-05
通讯作者:
张楠楠
作者简介:
周黄(1993—),男,博士研究生,基金资助:
Huang ZHOU(),Yu CHANG,Xing FAN,Nannan ZHANG(),Changyuan TAO
Received:
2019-10-30
Revised:
2020-03-09
Online:
2020-10-05
Published:
2020-10-05
Contact:
Nannan ZHANG
摘要:
研究针对TiO2纳米管材料批量电合成过程的结构有序性耗失问题,考察了TiO2纳米管阵列生长过程中的非线性动力学机制,及其随电解时间等的演变机制。结合扫描电镜(SEM)及电化学分析表明,TiO2纳米管阵列形成是低聚羟基钛中间体扩散-反应耦合过程中的自组织行为。研究建立了电合成体系的反应-扩散动力学方程组,并对其进行了线性稳定性分析,阐释了TiO2纳米管阵列有序结构形成,乃至出现周期性电化学振荡的参数阈值空间,在此基础上提出了TiO2纳米管阵列电合成过程的扩散-反应耦合强化机制。研究提出的非线性动力学机制广泛存在于各种金属的电溶过程中,并对产物结构及过程电耗有深刻影响。这也为新型纳米材料的批量电合成过程强化提供了理论依据。
中图分类号:
周黄, 常禹, 范兴, 张楠楠, 陶长元. TiO2纳米管阵列电合成的扩散-反应耦合强化机制研究[J]. 化工学报, 2020, 71(10): 4663-4673.
Huang ZHOU, Yu CHANG, Xing FAN, Nannan ZHANG, Changyuan TAO. Study on diffusion-reaction coupled strengthening mechanism based on electrosynthesis of titanium dioxide nanotube array[J]. CIESC Journal, 2020, 71(10): 4663-4673.
图1 钛电极表面TiO2纳米管生成过程中电流时间曲线(a)以及(a)图中TiO2纳米管生成过程中阶段(1)~(4)的SEM图[(b)~(e)]
Fig.1 Plot of current vs time in growth process of TiO2 nanotubes by anodization on surface of Ti electrode(a) and SEM images [(b)—(e)] of TiO2 nanotube arrays at stage(1)—(4) in Fig.1(a), respectively
图2 不同电解电压下阳极氧化法制备TiO2纳米管生长过程中的电流时间曲线(a)以及对应TiO2纳米管的SEM图[(b)~(e)]
Fig.2 Plot of current vs time(a) and the SEM images [(b)—(e)] in the growth process of TiO2 nanotubes by anodization under different voltage
1 | Kavan L, O'Regan B, Kay A, et al. Preparation of TiO2 (anatase) films on electrodes by anodic oxidative hydrolysis of TiCl3[J]. Journal of Electroanalytical Chemistry, 1993, 346(1/2): 291-307. |
2 | Asahi R, Morikawa T, Ohwaki T, et al. Visible light photocatalysis in nitrogen-doped titanium oxides[J]. Science, 2001, 293(5528): 269-271. |
3 | 赖跃坤, 孙岚, 左娟, 等. 氧化钛纳米管阵列制备及形成机理[J]. 物理化学学报, 2004, 20(9): 1063-1066. |
Lai Y K, Sun L, Zuo J, et al. Preparation and formation mechanism of titanium oxide nanotube arrays[J]. Acta Physico-Chimica Sinica, 2004, 20(9): 1063-1066. | |
4 | Jan M M, Tsuchiya H, Schmuki P. High-aspect-ratio TiO2 nanotubes by anodization of titanium[J]. Angewandte Chemie International Edition, 2005, 44(14): 2100-2102. |
5 | 田甜, 肖秀峰, 刘榕芳. 电化学阳极氧化自组织TiO2纳米管阵列的研究[J]. 传感技术学报, 2006, 19(5): 1014-1017. |
Tian T, Xiao X F, Liu R F. Electrochemistry anodic oxidation self assembled TiO2 nanotube arrays[J]. Chinese Journal of Sensors and Actuators, 2006, 19(5): 1014-1017. | |
6 | 李荐, 罗佳, 彭振文, 等. 不同阳极氧化条件下TiO2纳米管阵列的制备及表征[J]. 无机材料学报, 2010, 25(5): 44-48. |
Li J, Luo J, Peng Z W, et al. Preparation and characterization of TiO2 nanotube arrays under different anodizing conditions[J]. Journal of Inorganic Materials, 2010, 25(5): 44-48. | |
7 | 高佳明, 王明, 马晓华, 等. 烧结温度对TiO2/不锈钢中空纤维复合膜结构和性能的影响[J]. 化工学报, 2018, 69(11): 4879-4886. |
Gao J M, Wang M, Ma X H, et al. Effect of sintering temperature on structures and properties of TiO2/stainless steel hollow fiber composite membrane[J]. CIESC Journal, 2018, 69(11): 4879-4886. | |
8 | 覃方丽, 袁耀, 艾冠亚, 等. 三维有序大/介孔TiO2反opal光阳极制备及光电性能[J]. 化工学报, 2017, 68(7): 2925-2930. |
Qin F L, Yuan Y, Ai G Y, et al. Three-dimensional ordered macro/mesoporous TiO2 inverse opal electrode with enhanced dye-sensitized solar cells' efficiency [J]. CIESC Journal, 2017, 68(7): 2925-2930. | |
9 | 李坚, 郭丽芳, 李廷鱼, 等. 阳极氧化制备硅基TiO2纳米管阵列及形貌表征[J]. 微纳电子技术, 2019, 56(7): 522-528. |
Li J, Guo L F, Li T Y, et al. Preparation of silicon-based TiO2 nanotube arrays by anodic oxidation and morphological characterization[J]. Micronanoelectronic Technology, 2019, 56(7): 522-528. | |
10 | Dawei G, Grimes C A, Varghese O K, et al. Titanium oxide nanotube arrays prepared by anodic oxidation[J]. Journal of Materials Research, 2001, 16(12): 3331-3334. |
11 | Prakasam H E, Shankar K, Paulose M, et al. A new benchmark for TiO2 nanotube array growth by anodization[J]. Journal of Physical Chemistry C, 2007, 111(20): 7235-7241. |
12 | 孙岚, 李静, 庄惠芳, 等. TiO2纳米管阵列的制备、改性及其应用研究进展[J]. 无机化学学报, 2007, 23(11): 12-21. |
Sun L, Li J, Zhuang H F, et al. Progress on fabrication, modification and applications of titania nanotube arrays[J]. Chinese Journal of Inorganic Chemistry, 2007, 23(11): 12-21. | |
13 | 管东升, 方海涛, 逯好峰, 等. 阳极氧化TiO2纳米管阵列的制备与掺杂[J]. 化学进展, 2008, 20(12): 1868-1879. |
Guan D S, Fang H T, Lu H F, et al. Preparation and doping of anodic TiO2 nanotube array[J]. Progress in Chemistry, 2008, 20(12): 1868-1879. | |
14 | 廖建军, 李士普, 曹献坤, 等. 有序TiO2纳米管阵列光催化性能研究进展[J]. 化工进展, 2011, 30(9): 2003-2012. |
Liao J J, Li S P, Cao X K, et al. Review on photocatalytic activity of highly ordered TiO2 nanotube arrays[J]. Chemical Industry and Engineering Progress, 2011, 30(9): 2003-2012. | |
15 | Zhang W, Liu Y, Guo F, et al. Kinetic analysis of anodic growth of TiO2 nanotubes: effects of voltage and temperature[J]. Journal of Materials Chemistry C, 2019, 7(45): 14098-14108. |
16 | 弓程, 向思弯, 张泽阳, 等. LaCoO3-TiO2纳米管阵列的构筑及可见光光催化性能[J]. 物理化学学报, 2019, 35(6): 616-623. |
Gong C, Xiang S W, Zhang Z Y, et al. Construction and visible-light-driven photocatalytic properties of LaCoO3-TiO2 nanotube arrays[J]. Acta Physico-Chimica Sinica, 2019, 35(6): 616-623. | |
17 | O'Regan B, Grätzel M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films[J]. Nature, 1991, 353(6346): 737-740. |
18 | Li H, Wang J, Huang K, et al. In-situ preparation of multi-layer TiO2 nanotube array thin films by anodic oxidation method[J]. Materials Letters, 2011, 65(8): 1188-1190. |
19 | Roy P, Berger S, Schmuki P. TiO2 nanotubes: synthesis and applications[J]. Angewandte Chemie International Edition, 2011, 50(13): 2904-2939. |
20 | Grimes C A. Synthesis and application of highly ordered arrays of TiO2 nanotubes[J]. Journal of Materials Chemistry, 2007, 17(15): 1451-1457. |
21 | 汪静茹, 李文尧, 姚宝殿. 水热法制备二氧化钛纳米管: 形成机理、影响因素及应用[J]. 材料导报, 2016, 30(5): 144-152. |
Wang J R, Li W Y, Yao B D. Hydrothermally produced titania nanotubes: formation mechanism, influence factors and applications[J]. Materials Review, 2016, 30(5): 144-152. | |
22 | Su Z, Zhou W. Formation, morphology control and applications of anodic TiO2 nanotube arrays[J]. Journal of Materials Chemistry, 2011, 21(25): 8955-8970. |
23 | Zhu X, Han H, Duan W, et al. Research progress in formation mechanism of TiO2 nanotubes and nanopores in porous anodic oxide[J]. Acta Physico-Chimica Sinica, 2012, 28(6): 1291-1305. |
24 | Zhang S, Yu D, Li D, et al. Forming process of anodic TiO2 nanotubes under a preformed compact surface layer[J]. Journal of the Electrochemical Society, 2014, 161(10): E135-E141. |
25 | LeClere D, Velota A, Skeldon P, et al. Tracer investigation of pore formation in anodic titania[J]. Journal of the Electrochemical Society, 2008, 155(9): 487-494. |
26 | Lee K, Mazare A, Schmuki P. One-dimensional titanium dioxide nanomaterials: nanotubes[J]. Chemical Reviews, 2014, 114(19): 9385-9454. |
27 | Petukhov D I, Eliseev A A, Kolesnik I V, et al. Formation mechanism and packing options in tubular anodic titania films[J]. Microporous and Mesoporous Materials, 2008, 114(1/2/3): 440-447. |
28 | Lee W, Kim J C, Gçsele U. Spontaneous current oscillations during hard anodization of aluminum under potentiostatic conditions[J]. Advanced Functional Materials, 2010, 20(1): 21-27. |
29 | Liu H, Tao L, Shen W. Controllable current oscillation and pore morphology evolution in the anodic growth of TiO₂ nanotubes[J]. Nanotechnology, 2011, 22(15): 155603. |
30 | Tao J L, Zhao J L, Tang C C, et al. Mechanism study of self-organized TiO2 nanotube arrays by anodization[J]. New Journal of Chemistry, 2008, 32(12): 2164-2168. |
31 | Tovbin Y K. Local equations of state in nonequilibrium heterogeneous physicochemical systems[J]. Russian Journal of Physical Chemistry A, 2017, 91(3): 403-424. |
32 | Fan X, Hou J, Sun D, et al. Mn-oxides catalyzed periodic current oscillation on the anode[J]. Electrochimica Acta, 2013, 102: 466-471. |
33 | Bai H, Qing S, Yang D, et al. Periodic potential oscillation during oxygen evolution catalyzed by manganese oxide at constant current[J]. Journal of the Electrochemical Society, 2017, 164(4): E78-E83. |
34 | Raja K S, Gandhi T, Misra M. Effect of water content of ethylene glycol as electrolyte for synthesis of ordered titania nanotubes[J]. Electrochemistry Communications, 2007, 9(5): 1069-1076. |
35 | Krischer K, Mazouz N, Fronts Grauel P., waves, and stationary patterns in electrochemical systems[J]. Angewandte Chemie, 2001, 40(5): 850-869. |
36 | 李如生. 非平衡态热力学和耗散结构[M]. 北京: 清华大学出版社, 1986. |
Li R S. Nonequilibrium Thermodynamics and Dissipative Structure[M]. Beijing: Tsinghua University Press, 1986. | |
37 | Fan X, Liao L, Chang Y, et al. Nonlinear self-organizing kinetics in the electrochemical growth of alumina nanotube arrays[J]. ChemElectroChem, 2014, 1(5): 925-932. |
38 | Thompson G E, Furneaux R C, Wood G C, et al. Nucleation and growth of porous anodic films on aluminium[J]. Nature, 1978, 272(5652): 433-435. |
39 | Guin D, Manorama S V, Latha J N L, et al. Photoreduction of silver on bare and colloidal TiO2 nanoparticles/nanotubes: synthesis, characterization, and tested for sntibacterial outcome[J]. The Journal of Physical Chemistry C, 2007, 111(36): 13393-13397. |
[1] | 陈杰, 林永胜, 肖恺, 杨臣, 邱挺. 胆碱基碱性离子液体催化合成仲丁醇性能研究[J]. 化工学报, 2023, 74(9): 3716-3730. |
[2] | 胡兴枝, 张皓焱, 庄境坤, 范雨晴, 张开银, 向军. 嵌有超小CeO2纳米粒子的碳纳米纤维的制备及其吸波性能[J]. 化工学报, 2023, 74(8): 3584-3596. |
[3] | 何晓崐, 刘锐, 薛园, 左然. MOCVD生长AlN单晶薄膜的气相和表面化学反应综述[J]. 化工学报, 2023, 74(7): 2800-2813. |
[4] | 陈韶云, 徐东, 陈龙, 张禹, 张远方, 尤庆亮, 胡成龙, 陈建. 单层聚苯胺微球阵列结构的制备及其吸附性能[J]. 化工学报, 2023, 74(5): 2228-2238. |
[5] | 张全碧, 羊依金, 郭旭晶. 芬顿氧化法对利福平制药废水中溶解性有机物的催化降解[J]. 化工学报, 2023, 74(5): 2217-2227. |
[6] | 徐东, 田杜, 陈龙, 张禹, 尤庆亮, 胡成龙, 陈韶云, 陈建. 聚苯胺/二氧化锰/聚吡咯复合纳米球的制备及其电化学储能性[J]. 化工学报, 2023, 74(3): 1379-1389. |
[7] | 禹进, 余彬彬, 蒋新生. 一种基于虚拟组分的燃烧调控化学作用量化及分析方法研究[J]. 化工学报, 2023, 74(3): 1303-1312. |
[8] | 徐珂, 史国强, 薛冬峰. 无机杂化钙钛矿团簇材料:介尺度钙钛矿材料发光性质研究[J]. 化工学报, 2022, 73(6): 2748-2756. |
[9] | 郑默, 李晓霞. ReaxFF MD模拟揭示的煤热解挥发分自由基反应的竞争与协调[J]. 化工学报, 2022, 73(6): 2732-2741. |
[10] | 李岩, 田阿慧, 周毅. 反应性双射流中标量输运和化学反应特性[J]. 化工学报, 2022, 73(5): 1947-1963. |
[11] | 余彬彬, 蒋新生, 禹进, 蔡运雄, 李玉玺, 何东海, 于佳佳. 全氟己酮抑制航空煤油燃烧实验及化学动力学研究[J]. 化工学报, 2022, 73(4): 1834-1844. |
[12] | 黄明, 朱亮, 丁紫霞, 毛一婷, 马中青. 生物质三组分与低密度聚乙烯共催化热解制取轻质芳烃的协同作用机理[J]. 化工学报, 2022, 73(2): 699-711. |
[13] | 郑克晴, 孙亚, 闫阳天, 李丽, 杨钧. 一种热电协同增强的固体氧化物燃料电池新型连接件的数值模拟[J]. 化工学报, 2022, 73(12): 5572-5580. |
[14] | 玄伟伟, 董彦吾, 王海轮. 基于ReaxFF-MD和DFT的废旧PP塑料水蒸气气化机理研究[J]. 化工学报, 2022, 73(11): 5251-5262. |
[15] | 陈婷, 胡泽浩, 秦喆, 陈园虹, 徐彦乔, 林坚, 谢志翔. 有机相微波合成AgInS2量子点及其白光发光二极管应用研究[J]. 化工学报, 2022, 73(11): 5167-5176. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||