化工学报 ›› 2020, Vol. 71 ›› Issue (10): 4696-4703.DOI: 10.11949/0438-1157.20191151
收稿日期:
2019-10-19
修回日期:
2019-11-18
出版日期:
2020-10-05
发布日期:
2020-10-05
通讯作者:
郑杰
作者简介:
吕雪(1996—),女,硕士研究生,基金资助:
Xue LYU(),Yue MOU,Yiwen MIU,Hanlu LIAO,Jiansu RAN,Jie ZHENG()
Received:
2019-10-19
Revised:
2019-11-18
Online:
2020-10-05
Published:
2020-10-05
Contact:
Jie ZHENG
摘要:
硫化氢具有腐蚀性与毒性,采用吸收剂吸收硫化氢气体是重要的脱硫处理方式。不同的吸收剂在吸收效率上存在较大差别。首先对比了三氯化铁体系、碘酸钾体系和碱性铁氰化钾体系三种不同硫化氢吸收剂的吸收效率。在此基础上重点优化了碘酸钾体系吸收条件参数,讨论了包含浓度、温度、pH、气体流量及时间等因素对硫化氢吸收效率的影响。并建立了四因素三水平正交试验研究较优吸收条件,得到正交试验优化吸收条件为:温度55℃,pH 6.01,硫化氢流量0.3 L·min-1,吸收时间1 min,该条件下8%(质量)碘酸钾体系的三级吸收效率为51.56%。研究结果对硫化氢吸收处理提供了理论参考,也为间接电解法循环处理研究提供了支持。
中图分类号:
吕雪, 牟玥, 缪逸文, 廖寒露, 冉建速, 郑杰. 三种硫化氢吸收剂吸收效率对比及碘酸钾体系吸收条件优化研究[J]. 化工学报, 2020, 71(10): 4696-4703.
Xue LYU, Yue MOU, Yiwen MIU, Hanlu LIAO, Jiansu RAN, Jie ZHENG. Comparison of absorption efficiency of three hydrogen sulfide absorbents and optimization of absorption conditions of potassium iodate system[J]. CIESC Journal, 2020, 71(10): 4696-4703.
水平 | A(硫化氢流量)/ (L·min-1) | B(吸收时间)/min | C(吸收 温度)/℃ | D(体系pH) |
---|---|---|---|---|
1 | 0.3 | 1 | 25 | 2 |
2 | 0.67 | 2 | 40 | 6 |
3 | 1 | 3 | 55 | 10 |
表1 硫化氢吸收剂正交实验设计
Table 1 Orthogonal test design of hydrogen sulfide absorbent
水平 | A(硫化氢流量)/ (L·min-1) | B(吸收时间)/min | C(吸收 温度)/℃ | D(体系pH) |
---|---|---|---|---|
1 | 0.3 | 1 | 25 | 2 |
2 | 0.67 | 2 | 40 | 6 |
3 | 1 | 3 | 55 | 10 |
序号 | 碘酸钾质量浓度 | 三级吸收效率 η/% | 反应前 pH | 反应后pH | ||
---|---|---|---|---|---|---|
1#吸收管 | 2#吸收管 | 3#吸收管 | ||||
1 | 0.01 | 5.79 | 4.42 | 1.71 | 1.64 | 1.60 |
2 | 0.03 | 12.53 | 5.25 | 1.38 | 1.25 | 1.22 |
3 | 0.05 | 18.33 | 5.48 | 1.35 | 1.18 | 1.18 |
4 | 0.06 | 21.39 | 5.83 | 1.19 | 1.14 | 1.13 |
5 | 0.08 | 26.35 | 6.27 | 1.13 | 1.00 | 0.94 |
表2 不同浓度碘酸钾体系吸收前后pH的变化
Table 2 Changes of pH before and after absorption in different concentrations of potassium iodate system
序号 | 碘酸钾质量浓度 | 三级吸收效率 η/% | 反应前 pH | 反应后pH | ||
---|---|---|---|---|---|---|
1#吸收管 | 2#吸收管 | 3#吸收管 | ||||
1 | 0.01 | 5.79 | 4.42 | 1.71 | 1.64 | 1.60 |
2 | 0.03 | 12.53 | 5.25 | 1.38 | 1.25 | 1.22 |
3 | 0.05 | 18.33 | 5.48 | 1.35 | 1.18 | 1.18 |
4 | 0.06 | 21.39 | 5.83 | 1.19 | 1.14 | 1.13 |
5 | 0.08 | 26.35 | 6.27 | 1.13 | 1.00 | 0.94 |
实验号 | 因素水平 | 三级吸收效率/% | |||
---|---|---|---|---|---|
A | B | C | D | ||
1 | 1(0.3) | 1(1) | 1(26.5) | 1(1.93) | 51.26 |
2 | 1 | 2(2) | 2(40) | 2(6.01) | 52.27 |
3 | 1 | 3(3) | 3(55) | 3(10.11) | 50.12 |
4 | 2(0.67) | 1 | 2 | 3 | 32.87 |
5 | 2 | 2 | 3 | 1 | 38.96 |
6 | 2 | 3 | 1 | 2 | 30.34 |
7 | 3(1) | 1 | 3 | 2 | 45.36 |
8 | 3 | 2 | 1 | 3 | 30.10 |
9 | 3 | 3 | 2 | 1 | 22.83 |
k1 | 51.21 | 43.16 | 37.23 | 37.68 | |
k2 | 34.06 | 40.44 | 35.99 | 42.65 | |
k3 | 32.76 | 34.43 | 44.81 | 37.70 | |
极差R | 18.45 | 8.73 | 8.83 | 4.97 | |
优化水平 | A1 | B1 | C3 | D2 | |
因素影响顺序 | A>C>B>D |
表3 碘酸钾体系正交实验结果
Table 3 Orthogonal test results of potassium iodate system
实验号 | 因素水平 | 三级吸收效率/% | |||
---|---|---|---|---|---|
A | B | C | D | ||
1 | 1(0.3) | 1(1) | 1(26.5) | 1(1.93) | 51.26 |
2 | 1 | 2(2) | 2(40) | 2(6.01) | 52.27 |
3 | 1 | 3(3) | 3(55) | 3(10.11) | 50.12 |
4 | 2(0.67) | 1 | 2 | 3 | 32.87 |
5 | 2 | 2 | 3 | 1 | 38.96 |
6 | 2 | 3 | 1 | 2 | 30.34 |
7 | 3(1) | 1 | 3 | 2 | 45.36 |
8 | 3 | 2 | 1 | 3 | 30.10 |
9 | 3 | 3 | 2 | 1 | 22.83 |
k1 | 51.21 | 43.16 | 37.23 | 37.68 | |
k2 | 34.06 | 40.44 | 35.99 | 42.65 | |
k3 | 32.76 | 34.43 | 44.81 | 37.70 | |
极差R | 18.45 | 8.73 | 8.83 | 4.97 | |
优化水平 | A1 | B1 | C3 | D2 | |
因素影响顺序 | A>C>B>D |
1 | 唐慧, 王泰人. 油田气净化脱酸技术探讨[J]. 现代化工, 2019, 39(S1): 85-88. |
Tang H, Wang T R. Discussion on oilfield gas purification and deacidification technology[J]. Modern Chemical Industry, 2019, 39(S1): 85-88. | |
2 | Claudia N O, Jason J L, Anton D V, et al. Selective removal of hydrogen sulfide from simulated biogas streams using sterically hindered amine adsorbents[J]. Chemical Engineering Journal, 2020, 379: 122349. |
3 | 申梦瑶. 利用离子液体类吸收剂脱除焦炉煤气中硫化氢的研究[D]. 北京: 北京化工大学, 2018. |
Shen M Y. Study on the removal of hydrogen sulfide in coke oven gas by ionic liquid based absorbents[D]. Beijing: Beijing University of Chemical Technology, 2018. | |
4 | Asbel D H, Noora K, Pekka S, et al. Effect of H2S and thiophene on the steam reforming activity of nickel and rhodium catalysts in a simulated coke oven gas stream[J]. Applied Catalysis B: Environmental, 2019, 258: 117977. |
5 | 张评, 冯权莉. 电解铝废气处理的研究进展[J]. 化工科技, 2018, 26(5): 63-67. |
Zhang P, Feng Q L. Research progress on treatment of waste gas in electrolytic aluminum industry[J]. Science & Technology in Chemical Industry, 2018, 26(5): 63-67. | |
6 | Liu X P, Wang B H, Wang D D, et al. Study on the desulfurization performance of metal-based low transition temperature mixtures: Removal of hydrogen sulfide and sulfur recovery[J]. Fuel Processing Technology, 2019, 193: 372-377. |
7 | Maryam D, Raheleh S, Alimorad R. Adsorption of hydrogen sulfide over a novel metal organic framework-metal oxide nanocomposite: TOUO-x (TiO 2 /UiO-66)[J]. Journal of Solid State Chemistry, 2019, 278: 120866. |
8 | Liu X P, Li J P, Wang R. Study on the desulfurization performance of hydramine/ionic liquid solutions at room temperature and atmospheric pressure[J]. Fuel Processing Technology, 2017, 167: 382-387. |
9 | 沈鑫甫. 中学教师实用化学辞典[M]. 北京: 北京科学技术出版社, 2002: 190-191. |
Shen X F. Dictionary of Practical Chemistry for Middle School Teachers[M]. Beijing: Beijing Science and Technology Press, 2002: 190-191. | |
10 | Mizuta S, Kondo W, Fujii K, et al. Hydrogen production from hydrogen sulfide by the iron-chlorine hybrid process[J]. Industrial & Engineering Chemistry Research, 1991, 30(7): 1601-1608. |
11 | 俞英, 王崇智, 赵永丰, 等. 氧化-电解法从硫化氢获取廉价氢气方法的研究[J]. 太阳能学报, 1997, (4): 53-61. |
Yu Y, Wang C Z, Zhao Y F, et al. Study on cheap hydrogen from hydrogen sulfide by oxidization-electrolysis method[J]. Acta Energiae Solaris Sinica, 1997, (4): 53-61. | |
12 | 鄂利海, 雒怀庆, 栾耕时. Fe(III)盐溶液吸收法处理H2S气体的研究[J]. 抚顺石油学院学报, 2001, (1): 12-16. |
E L H, Luo H Q, Luan G S. Process of H2S treatment using aqueous ferric salt solution absorption[J]. Journal of Liaoning Shihua University, 2001, (1): 12-16. | |
13 | 李海燕, 宋增红, 刘爱华, 等. 电解硫化氢制氢气和硫磺的影响因素研究[J]. 硫酸工业, 2018, (4): 40-43. |
Li H Y, Song Z H, Liu A H, et al. Study on influence factors of hydrogen and sulphur by electrolysis of hydrogen sulfide[J]. Sulphuric Acid Industry, 2018, (4): 40-43. | |
14 | Huang H Y, Shang J, Yu Y, et al. Chung. Recovery of hydrogen from hydrogen sulfide by indirect electrolysis process[J]. International Journal of Hydrogen Energy, 2019, 44: 5108-5113. |
15 | 周秀华, 王其峰. 加碘盐中碘酸钾含量的简易化验[J]. 海湖盐与化工, 1994, (6): 42-45+47. |
Zhou X H, Wang Q F. Simple assay of potassium iodate in iodized salt[J]. Journal of Salt Science and Chemical Industry, 1994, (6): 42-45+47. | |
16 | Kalina D, Mass Jr E T. Indirect hydrogen sulfide conversion(Ⅰ): An acidic electrochemical process[J]. International Journal of Hydrogen Energy, 1985, 10(3): 157-162. |
17 | Kalina D, Mass Jr E T. Indirect hydrogen sulfide conversion(Ⅱ): A basic electrochemical process[J]. International Journal of Hydrogen Energy, 1985, 10(3): 163-167. |
18 | 李秀玲, 赵朝成. 核桃壳质活性炭的制备及吸附恶臭气体的研究[J]. 环境科技, 2009, 22(6): 32-34. |
Li X L, Zhao C C. Study on preparation of activated carbons from walnut shells and odor gas adsorption[J]. Environmental Science and Technology, 2009, 22(6): 32-34. | |
19 | 李秀玲, 辛磊, 赵朝成. KIO3改性炭基催化剂的制备及其吸附性能评价[J]. 炭素技术, 2019, 38(2): 52-57. |
Li X L, Xin L, Zhao C C. Preparation and adsorption performance evaluation of carbon-based catalysts modified by KIO3[J]. Carbon Techniques, 2019, 38(2): 52-57. | |
20 | 马世昌. 化学物质辞典[M]. 西安: 陕西科学技术出版社, 1999: 591. |
Ma S C. Dictionary of Chemical Substances[M]. Xi 'an: Shaanxi Science and Technology Press, 1999: 591. | |
21 | Otto H L, Winand M. The preparation of Curie quantities of S35-labelled element sulphur[J]. The International Journal of Applied Radiation and Isotopes, 1961, 10: 130. |
22 | 余丽. 基于丝网印刷电极硫化氢、重金属离子的快速检测[D]. 合肥: 合肥工业大学, 2013. |
Yu L. Rapid detection of hydrogen sulfide and heavy metal ions based on screen-printed electrode[D]. Hefei: Hefei University of Technology, 2013. | |
23 | 徐后传. 碳材料修饰电极快速检测硫化氢和亚硝酸盐及其在食品检测中的应用研究[D]. 合肥: 合肥工业大学, 2015. |
Xu H Z. Rapid electrochemical sensing of hydrogen sulfide and nitrite in food based on carbon material modified electrodes[D]. Hefei: Hefei University of Technology, 2015. | |
24 | 韩磊. 新型间接电解硫化氢铁系吸收液及电解池设计研究[D]. 北京: 中国石油大学(北京), 2016. |
Han L. Design of a new type of indirect electrolytic hydrogen sulfide absorption liquid and electrolytic cell[D]. Beijing: China University of Petroleum (Beijing), 2016. | |
25 | 赵艳青, 张永春, 陈绍云, 等. 液态氧化法选择性脱除烟道气中硫化氢的研究[J]. 低温与特气, 2011, 29(3): 8-12. |
Zhao Y Q, Zhang Y C, Chen S Y, et al. The study of selective removal H2S from flue-gas by wet air oxidation[J]. Low Temperature and Specialty Gases, 2011, 29(3): 8-12. | |
26 | 王凯, 王磊, 魏莉, 等. 新型硫化氢吸收剂试验研究[J]. 山东化工, 2017, 46(17): 27-28+31. |
Wang K, Wang L, Wei L, et al. Experimental study on the new type of H2S absorption[J]. Shandong Chemical Industry, 2017, 46(17): 27-28+31. | |
27 | 张存胜, 王文娟, 苏海佳, 等. 改性活性炭脱除沼气中硫化氢的性能及其再生研究[J]. 现代化工, 2016, 36(12): 59-62. |
Zhang C S, Wang W J, Su H J, et al. Desulfurization of biogas by modified activated carbon and its regeneration[J]. Modern Chemical Industry, 2016, 36(12): 59-62. | |
28 | 沈力. 聚合硫酸铁-硫酸铜溶液吸收硫化氢的研究[D]. 吉林: 吉林大学, 2014. |
Shen L. The study on the absorption of hydrogen sulfide by polyferric sulphate-copper sulfate[D]. Jilin: Jilin University, 2014. | |
29 | 李发永, 曹作刚, 张海鹏, 等. 由硫化氢制取硫磺及氢气扩大实验研究[J]. 化工进展, 2001, (7): 38-41. |
Li F Y, Cao Z G, Zhang H P, et al. Experimental study on transforming refinery acid tail gas into sulphur and hydrogen[J]. Chemical Industry and Engineering Progress, 2001, (7): 38-41. | |
30 | 陈凯, 史有刚, 高圣新, 等. 油水井酸化用硫化氢吸收剂的研制及性能[J]. 石油与天然气化工, 2010, 39(3): 226-229+179-180. |
Chen K, Shi Y G, Gao S X, et al. Synthesis and evaluation of hydrogen sulfide scavenger for well acidizing[J]. Chemical Engineering of Oil & Gas, 2010, 39(3): 226-229+179-180. | |
31 | 董如何, 肖必华, 方永水. 正交试验设计的理论分析方法及应用[J]. 安徽建筑工业学院学报(自然科学版), 2004, (6): 103-106. |
Dong R H, Xiao B H, Fang Y S. Theoretical analysis method and application of orthogonal experimental design[J]. Journal of Anhui Jianzhu University, 2004, (6): 103-106. | |
32 | 王艳, 张爱珍, 任春生. 正交试验设计与优化的理论基础与应用进展[J]. 分析试验室, 2008, 27(S2): 333-334. |
Wang Y, Zhang A Z, Ren C S. The theoretical basis and application progress of orthogonal experimental design and optimization[J]. Chinese Journal of Analysis Laboratory, 2008, 27(S2): 333-334. | |
33 | 邓利民, 李世伟, 侯映天, 等. 两种Betti碱对硫化氢吸收性能研究[J]. 化学研究与应用, 2017, 29(12): 1909-1915. |
Deng L M, Li S W, Hou Y T, et al. Preparation of two Betti alkalis and survey about absorption of hydrogen sulfide by betti alkalis[J]. Chemical Research and Application, 2017, 29(12): 1909-1915. | |
34 | 张永, 王学谦, 宁平, 等. 碳酸钠溶液吸收处理硫化氢试验研究[J]. 云南化工, 2006, (2): 32-34. |
Zhang Y, Wang X Q, Ning P, et al. Study on the absorption of hydrogen sulfide by sodium carbonate solution[J]. Yunnan Chemical Technology, 2006, (2): 32-34. |
[1] | 杨欣, 王文, 徐凯, 马凡华. 高压氢气加注过程中温度特征仿真分析[J]. 化工学报, 2023, 74(S1): 280-286. |
[2] | 金伟其, 吴月荣, 王霞, 李力, 裘溯, 袁盼, 王铭赫. 化工园区工业气体泄漏气云红外成像检测技术与国产化装备进展[J]. 化工学报, 2023, 74(S1): 32-44. |
[3] | 黄琮琪, 吴一梅, 陈建业, 邵双全. 碱性电解水制氢装置热管理系统仿真研究[J]. 化工学报, 2023, 74(S1): 320-328. |
[4] | 金正浩, 封立杰, 李舒宏. 氨水溶液交叉型再吸收式热泵的能量及分析[J]. 化工学报, 2023, 74(S1): 53-63. |
[5] | 米泽豪, 花儿. 基于DFT和COSMO-RS理论研究多元胺型离子液体吸收SO2气体[J]. 化工学报, 2023, 74(9): 3681-3696. |
[6] | 何松, 刘乔迈, 谢广烁, 王斯民, 肖娟. 高浓度水煤浆管道气膜减阻两相流模拟及代理辅助优化[J]. 化工学报, 2023, 74(9): 3766-3774. |
[7] | 陈哲文, 魏俊杰, 张玉明. 超临界水煤气化耦合SOFC发电系统集成及其能量转化机制[J]. 化工学报, 2023, 74(9): 3888-3902. |
[8] | 齐聪, 丁子, 余杰, 汤茂清, 梁林. 基于选择吸收纳米薄膜的太阳能温差发电特性研究[J]. 化工学报, 2023, 74(9): 3921-3930. |
[9] | 陈美思, 陈威达, 李鑫垚, 李尚予, 吴有庭, 张锋, 张志炳. 硅基离子液体微颗粒强化气体捕集与转化的研究进展[J]. 化工学报, 2023, 74(9): 3628-3639. |
[10] | 陈国泽, 卫东, 郭倩, 向志平. 负载跟踪状态下的铝空气电池堆最优功率点优化方法[J]. 化工学报, 2023, 74(8): 3533-3542. |
[11] | 刘文竹, 云和明, 王宝雪, 胡明哲, 仲崇龙. 基于场协同和耗散的微通道拓扑优化研究[J]. 化工学报, 2023, 74(8): 3329-3341. |
[12] | 张瑞航, 曹潘, 杨锋, 李昆, 肖朋, 邓春, 刘蓓, 孙长宇, 陈光进. ZIF-8纳米流体天然气乙烷回收工艺的产品纯度关键影响因素分析[J]. 化工学报, 2023, 74(8): 3386-3393. |
[13] | 胡兴枝, 张皓焱, 庄境坤, 范雨晴, 张开银, 向军. 嵌有超小CeO2纳米粒子的碳纳米纤维的制备及其吸波性能[J]. 化工学报, 2023, 74(8): 3584-3596. |
[14] | 张曼铮, 肖猛, 闫沛伟, 苗政, 徐进良, 纪献兵. 危废焚烧处理耦合有机朗肯循环系统工质筛选与热力学优化[J]. 化工学报, 2023, 74(8): 3502-3512. |
[15] | 诸程瑛, 王振雷. 基于改进深度强化学习的乙烯裂解炉操作优化[J]. 化工学报, 2023, 74(8): 3429-3437. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||