化工学报 ›› 2020, Vol. 71 ›› Issue (2): 584-593.DOI: 10.11949/0438-1157.20190812
王修纲1,2,3(),吴裕凡1,2,郭潞阳1,2,路庆华3,叶晓峰1,2,曹育才1,2()
收稿日期:
2019-07-12
修回日期:
2019-10-11
出版日期:
2020-02-05
发布日期:
2020-02-05
通讯作者:
曹育才
作者简介:
王修纲(1986—),男,博士,工程师, 基金资助:
Xiugang WANG1,2,3(),Yufan WU1,2,Luyang GUO1,2,Qinghua LU3,Xiaofeng YE1,2,Yucai CAO1,2()
Received:
2019-07-12
Revised:
2019-10-11
Online:
2020-02-05
Published:
2020-02-05
Contact:
Yucai CAO
摘要:
基于CFD模拟与传热实验相结合的方法对5 L夹套聚合釜的传热性能进行研究。建立聚合釜的液固耦合稳态传热模型,获得釜内流体、夹套内流体及金属固体域内温度分布。开展传热实验对模拟结果进行验证,各对比点温度的最大相对误差在1%~5%范围内。通过模拟获得釜内外壁面传热系数及总传热系数,并关联出釜侧及夹套侧 Nu的经验式。结果表明:釜内流体温度分布方差始终在0.002以下,固体域内和传热边界层温度梯度较大,传热边界层厚度约3.8 mm;实验范围内,入口温度和反应放热量对釜内温度的影响显著,入口流速次之,搅拌转速影响最弱;夹套侧传热系数远小于釜侧传热系数,提高夹套侧传热系数是提升传热性能的关键;实验用聚合釜外表面散热量与内外温差呈正比,比例系数约为3.031 W·K -1。
中图分类号:
王修纲, 吴裕凡, 郭潞阳, 路庆华, 叶晓峰, 曹育才. 聚合釜传热性能的实验研究及数值模拟[J]. 化工学报, 2020, 71(2): 584-593.
Xiugang WANG, Yufan WU, Luyang GUO, Qinghua LU, Xiaofeng YE, Yucai CAO. Experimental study and CFD simulation of heat transfer in polymerization reactor[J]. CIESC Journal, 2020, 71(2): 584-593.
Mesh number | Tr /K | Ql /(W·m -2) |
---|---|---|
92×10 4 | 55.32 | 91.79 |
206×10 4 | 54.86 | 90.53 |
393×10 4 | 54.73 | 90.12 |
788×10 4 | 54.72 | 90.09 |
表1 网格无关检验
Table 1 Grid independence test
Mesh number | Tr /K | Ql /(W·m -2) |
---|---|---|
92×10 4 | 55.32 | 91.79 |
206×10 4 | 54.86 | 90.53 |
393×10 4 | 54.73 | 90.12 |
788×10 4 | 54.72 | 90.09 |
多项式系数 | ρ/(kg·m -3) | c p /(J·kg -1·K -1) | μ /(mPa·s) | λ/(W·m -1·K -1) |
---|---|---|---|---|
a | 5.4611×10 2 | 2.4810×10 3 | 1.0909×10 -1 | 9.9055×10 -2 |
b | -1.1414 | 9.7721 | -1.2086×10 -3 | -3.1159×10 -4 |
c | -1.2857×10 -2 | 1.8036×10 -2 | 2.8571×10 -6 | -4.4643×10 -7 |
表2 丙烯物性参数多项式系数
Table 2 Multinomial coefficients of physical property for propylene
多项式系数 | ρ/(kg·m -3) | c p /(J·kg -1·K -1) | μ /(mPa·s) | λ/(W·m -1·K -1) |
---|---|---|---|---|
a | 5.4611×10 2 | 2.4810×10 3 | 1.0909×10 -1 | 9.9055×10 -2 |
b | -1.1414 | 9.7721 | -1.2086×10 -3 | -3.1159×10 -4 |
c | -1.2857×10 -2 | 1.8036×10 -2 | 2.8571×10 -6 | -4.4643×10 -7 |
多项式系数 | ρ/(kg·m -3) | c p /(J·kg -1·K -1) | μ /(mPa·s) | λ/(W·m -1·K -1) |
---|---|---|---|---|
a | 7.7717×10 2 | 2.0175×10 3 | 1.7250 | 1.3152×10 -1 |
b | -7.0114×10 -1 | 3.7815 | -2.1955×10 -2 | -2.0679×10 -4 |
c | -5.7114×10 -4 | 2.0930×10 -3 | 9.1518×10 -5 | -2.4187×10 -8 |
表3 导热油物性参数多项式系数
Table 3 Multinomial coefficients of physical property for thermal oil
多项式系数 | ρ/(kg·m -3) | c p /(J·kg -1·K -1) | μ /(mPa·s) | λ/(W·m -1·K -1) |
---|---|---|---|---|
a | 7.7717×10 2 | 2.0175×10 3 | 1.7250 | 1.3152×10 -1 |
b | -7.0114×10 -1 | 3.7815 | -2.1955×10 -2 | -2.0679×10 -4 |
c | -5.7114×10 -4 | 2.0930×10 -3 | 9.1518×10 -5 | -2.4187×10 -8 |
条件 | 测温点 | 实验值/℃ | 模拟值/℃ | 绝对误差/℃ | 相对误差/% |
---|---|---|---|---|---|
① Tji=87.64℃, uin=1.0 m·s -1, N=200 r·min -1, Qr=0 | Tr | 83.01 | 82.66 | 0.35 | 0.42 |
Tjo | 86.82 | 86.76 | 0.06 | 0.07 | |
Ta | 42.12 | 43.98 | -1.86 | -4.42 | |
Tb | 47.12 | 48.50 | -1.38 | -2.93 | |
②Tji =56.86℃, uin =1.5 m·s -1, N=200 r·min -1, Qr=0 | Tr | 55.11 | 54.73 | 0.38 | 0.69 |
Tjo | 56.50 | 56.48 | 0.02 | 0.04 | |
Ta | 32.11 | 33.25 | -1.14 | -3.55 | |
Tb | 36.89 | 38.71 | -1.82 | -4.93 | |
③Tji =65.66℃, uin =2.0 m·s -1, N=200 r·min -1, Qr=250 W | Tr | 68.02 | 67.60 | 0.42 | 0.62 |
Tjo | 65.69 | 65.64 | 0.05 | 0.08 | |
Ta | 36.88 | 38.68 | -1.80 | -4.88 | |
Tb | 42.34 | 44.01 | -1.67 | -3.94 |
表4 模拟方法的实验验证
Table 4 Experimental verification of simulation method
条件 | 测温点 | 实验值/℃ | 模拟值/℃ | 绝对误差/℃ | 相对误差/% |
---|---|---|---|---|---|
① Tji=87.64℃, uin=1.0 m·s -1, N=200 r·min -1, Qr=0 | Tr | 83.01 | 82.66 | 0.35 | 0.42 |
Tjo | 86.82 | 86.76 | 0.06 | 0.07 | |
Ta | 42.12 | 43.98 | -1.86 | -4.42 | |
Tb | 47.12 | 48.50 | -1.38 | -2.93 | |
②Tji =56.86℃, uin =1.5 m·s -1, N=200 r·min -1, Qr=0 | Tr | 55.11 | 54.73 | 0.38 | 0.69 |
Tjo | 56.50 | 56.48 | 0.02 | 0.04 | |
Ta | 32.11 | 33.25 | -1.14 | -3.55 | |
Tb | 36.89 | 38.71 | -1.82 | -4.93 | |
③Tji =65.66℃, uin =2.0 m·s -1, N=200 r·min -1, Qr=250 W | Tr | 68.02 | 67.60 | 0.42 | 0.62 |
Tjo | 65.69 | 65.64 | 0.05 | 0.08 | |
Ta | 36.88 | 38.68 | -1.80 | -4.88 | |
Tb | 42.34 | 44.01 | -1.67 | -3.94 |
uin/(m·s -1) | N/(r·min -1) | αo/(W·m -2·K -1) | αi/(W·m -2·K -1) | K-calc /(W·m -2·K -1) | K-exp/(W·m -2·K -1) | Error/% |
---|---|---|---|---|---|---|
1.0 | 200 | 71.67 | 2556 | 66.11 | 62.38 | 5.64 |
1.5 | 200 | 75.80 | 2556 | 69.61 | 71.96 | -3.38 |
2.0 | 200 | 78.87 | 2556 | 72.19 | 78.09 | -8.17 |
4.0 | 100 | 86.79 | 1329 | 76.33 | 76.66 | -0.44 |
1.5 | 400 | 75.80 | 4915 | 70.65 | 73.57 | -4.13 |
1.0 | 800 | 71.67 | 9453 | 67.55 | 61.46 | 9.01 |
表5 不同条件下传热系数模拟值与实验值
Table 5 Calculation value and experimental value of heat transfer coefficient under different conditions
uin/(m·s -1) | N/(r·min -1) | αo/(W·m -2·K -1) | αi/(W·m -2·K -1) | K-calc /(W·m -2·K -1) | K-exp/(W·m -2·K -1) | Error/% |
---|---|---|---|---|---|---|
1.0 | 200 | 71.67 | 2556 | 66.11 | 62.38 | 5.64 |
1.5 | 200 | 75.80 | 2556 | 69.61 | 71.96 | -3.38 |
2.0 | 200 | 78.87 | 2556 | 72.19 | 78.09 | -8.17 |
4.0 | 100 | 86.79 | 1329 | 76.33 | 76.66 | -0.44 |
1.5 | 400 | 75.80 | 4915 | 70.65 | 73.57 | -4.13 |
1.0 | 800 | 71.67 | 9453 | 67.55 | 61.46 | 9.01 |
1 | Tan N, Yu L, Tan Z, et al. Kinetics of the propylene polymerization with prepolymerization at high temperature using Ziegler-Natta catalyst[J]. Journal of Applied Polymer Science, 2015, 132( 15): 223- 227. |
2 | Bergstra M F, Weickert G. Semi-batch reactor for kinetic measurements of catalyzed olefin co-polymerizations in gas and slurry phase[J]. Chemical Engineering Science, 2006, 61( 15): 4909- 4918. |
3 | Alshaiban A, Soares J B P. Effect of hydrogen and external donor on propylene polymerization kinetics with a 4th-generation Ziegler-Natta catalyst[J]. Macromolecular Reaction Engineering, 2012, 6( 6): 265- 274. |
4 | Rishina L A, Kissin Y V, Lalayan S S, et al. Synthesis of atactic polypropylene: propylene polymerization reactions with TiCl 4-Al(C 2H 5) 2Cl/Mg(C 4H 9) 2 catalyst [J]. Journal of Applied Polymer Science, 2019, 136: 47692- 47700. |
5 | Kulyabin P S, Portnyagin I A, Tsarev A N, et al. Ansa-zirconocenes bearing 5-NR2-6-alkyl-4-hydrocarbyl-2-methylindenyl moieties: synthesis, structure, stereoselective polymerization of propylene[J]. Journal of Organometallic Chemistry, 2019, 892: 41- 50. |
6 | Pater J T M, Weickert G, Swaaij W P M V. Polymerization of liquid propylene with a 4th generation Ziegler-Natta catalyst—influence of temperature, hydrogen and monomer concentration and prepolymerization method on polymerization kinetics[J]. Chemical Engineering Science, 2003, 57( 16): 3461- 3477. |
7 | Regestein L, Giese H, Zavrel M, et al. Comparison of two methods for designing calorimeters using stirred tank reactors[J]. Biotechnology and Bioengineering, 2013, 110( 1): 180- 190. |
8 | Samson J J C, Weickert G, Heerze A E, et al. Liquid-phase polymerization of propylene with a highly active catalyst[J]. AIChE Journal, 1998, 44( 6): 1424- 1437. |
9 | Pimplapure M S, Zheng X, Loos J, et al. Low-rate propylene slurry polymerization: morphology and kinetics[J]. Macromolecular Rapid Communications, 2005, 26( 14): 1155- 1158. |
10 | Pater J T M, Weickert G, Swaaij W P M V. Polymerization of liquid propylene with a fourth‐generation Ziegler-Natta catalyst: influence of temperature, hydrogen, monomer concentration, and prepolymerization method on powder morphology[J]. Journal of Applied Polymer Science, 2003, 87( 9): 1421- 1435. |
11 | Pater J T M, Weickert G, Swaaij W P M V. Propene bulk polymerization kinetics: role of prepolymerization and hydrogen[J]. AIChE Journal, 2003, 49( 1): 180- 193. |
12 | 张华海, 王铁峰. CFD-PBM耦合模型模拟气液鼓泡床的通用性研究[J]. 化工学报, 2019, 70( 2): 487- 495. |
Zhang H H, Wang T F. Generality of CFD-PBM coupled model for simulations of gas-liquid bubble column[J]. CIESC Journal, 2019, 70( 2): 487- 495 | |
13 | 刘宝庆, 郑毅骏, 梁慧力, 等. 剪切变稀体系同心双轴搅拌釜内的气液分散模拟[J]. 化工学报, 2017, 68( 6): 2280- 2289. |
Liu B Q, Zheng Y J, Liang H L, et al. CFD simulation on shear-thinning gas-liquid dispersion in coaxial mixer[J]. CIESC Journal, 2017, 68( 6): 2280- 2289. | |
14 | Shi D P, Luo Z H, Zheng Z W. Numerical simulation of liquid-solid two-phase flow in a tubular loop polymerization reactor[J]. Powder Technology, 2010, 198( 1): 135- 143. |
15 | Gao X, Shi D P, Chen X Z, et al. Three-dimensional CFD model of the temperature field for a pilot-plant tubular loop polymerization reactor[J]. Powder Technology, 2010, 203( 3): 574- 590. |
16 | Xie L, Zhu L T, Luo Z H, et al. Multiscale modeling of mixing behavior in a 3D atom transfer radical copolymerization stirred-tank reactor[J]. Macromolecular Reaction Engineering, 2017, 1( 1): 1- 13. |
17 | Perarasu V T, Arivazhagan M, Sivashanmugam P. CFD modelling study of heat transfer in a coiled agitated vessel[J]. Progress in Computational Fluid Dynamics, 2014, 14( 3): 177- 188. |
18 | Perarasu T, Arivazhagan M, Sivashanmugam P. Experimental and CFD heat transfer studies of Al 2O 3-water nanofluid in a coiled agitated vessel equipped with propeller [J]. Chinese Journal of Chemical Engineering, 2013, 21( 11): 1232- 1243. |
19 | 车圆圆, 周俊超, 毕纪葛, 等. 改进CBY桨搅拌釜内单相流体流动与传热特性研究[J]. 高校化学工程学报, 2014, 28( 3): 489- 496. |
Che Y Y, Zhou J C, Bi J G, et al. Study on single phase fluid flow and heat-transfer performance in a stirred tank with an improved CBY hydrofoil impeller[J]. J . Chem. Eng. Chinese Univ., 2014, 28( 3): 489- 496. | |
20 | 毕纪葛, 潘万贵, 周俊超, 等. 四斜叶桨搅拌下釜内盘管非稳态对流传热过程的模拟和实验研究[J]. 高校化学工程学报, 2015, 29( 4): 780- 788. |
Bi J G, Pan W G, Zhou J C, et al. CFD simulation and experimental study of heat transfer in a stirred tank equipped with a pitched-blade turbine and helical coils[J]. J . Chem. Eng. Chinese Univ., 2015, 29( 4): 780- 788. | |
21 | 张丽, 田密密, 吴剑华. 螺旋片强化的套管式换热器壳侧传热特性[J]. 高校化学工程学报, 2011, 25( 1): 24- 29. |
Zhang L, Tian M M, Wu J H. Heat transfer performance of the shell side of double-pipe heat exchanger enhanced with helical fins[J]. J . Chem. Eng. Chinese Univ., 2011, 25( 1): 24- 29. | |
22 | Delaplace G, Torrez C, Leuliet J C, et al. Experimental and CFD simulation of heat transfer to highly viscous fluids in an agitated vessel equipped with a non standard helical ribbon impeller[J]. Chemical Engineering Research and Design, 2001, 79( 8): 927- 937. |
23 | Rukruang A, Chimres N, Kaew-On J, et al. Experimental and numerical study on heat transfer and flow characteristics in an alternating cross-section flattened tube[J]. Heat Transfer-Asian Research, 2019, 48( 3): 817- 834. |
24 | Guha A, Jain A, Pradhan K. Computation and physical explanation of the thermo-fluid-dynamics of natural convection around heated inclined plates with inclination varying from horizontal to vertical[J]. International Journal of Heat and Mass Transfer, 2019, 135: 1130- 1151. |
25 | Cheng H J, Lei H Y, Zeng L, et al. Experimental investigation of single-phase natural circulation in a mini-loop driven by heating and cooling fluids[J]. Experimental Thermal and Fluid Science, 2019, 103: 182- 190. |
[1] | 宋嘉豪, 王文. 斯特林发动机与高温热管耦合运行特性研究[J]. 化工学报, 2023, 74(S1): 287-294. |
[2] | 张思雨, 殷勇高, 贾鹏琦, 叶威. 双U型地埋管群跨季节蓄热特性研究[J]. 化工学报, 2023, 74(S1): 295-301. |
[3] | 晁京伟, 许嘉兴, 李廷贤. 基于无管束蒸发换热强化策略的吸附热池的供热性能研究[J]. 化工学报, 2023, 74(S1): 302-310. |
[4] | 程成, 段钟弟, 孙浩然, 胡海涛, 薛鸿祥. 表面微结构对析晶沉积特性影响的格子Boltzmann模拟[J]. 化工学报, 2023, 74(S1): 74-86. |
[5] | 肖明堃, 杨光, 黄永华, 吴静怡. 浸没孔液氧气泡动力学数值研究[J]. 化工学报, 2023, 74(S1): 87-95. |
[6] | 叶展羽, 山訸, 徐震原. 用于太阳能蒸发的折纸式蒸发器性能仿真[J]. 化工学报, 2023, 74(S1): 132-140. |
[7] | 张双星, 刘舫辰, 张义飞, 杜文静. R-134a脉动热管相变蓄放热实验研究[J]. 化工学报, 2023, 74(S1): 165-171. |
[8] | 张义飞, 刘舫辰, 张双星, 杜文静. 超临界二氧化碳用印刷电路板式换热器性能分析[J]. 化工学报, 2023, 74(S1): 183-190. |
[9] | 陈爱强, 代艳奇, 刘悦, 刘斌, 吴翰铭. 基板温度对HFE7100液滴蒸发过程的影响研究[J]. 化工学报, 2023, 74(S1): 191-197. |
[10] | 刘明栖, 吴延鹏. 导光管直径和长度对传热影响的模拟分析[J]. 化工学报, 2023, 74(S1): 206-212. |
[11] | 王志国, 薛孟, 董芋双, 张田震, 秦晓凯, 韩强. 基于裂隙粗糙性表征方法的地热岩体热流耦合数值模拟与分析[J]. 化工学报, 2023, 74(S1): 223-234. |
[12] | 李科, 文键, 忻碧平. 耦合蒸气冷却屏的真空多层绝热结构对液氢储罐自增压过程的影响机制研究[J]. 化工学报, 2023, 74(9): 3786-3796. |
[13] | 何松, 刘乔迈, 谢广烁, 王斯民, 肖娟. 高浓度水煤浆管道气膜减阻两相流模拟及代理辅助优化[J]. 化工学报, 2023, 74(9): 3766-3774. |
[14] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[15] | 温凯杰, 郭力, 夏诏杰, 陈建华. 一种耦合CFD与深度学习的气固快速模拟方法[J]. 化工学报, 2023, 74(9): 3775-3785. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||