化工学报 ›› 2020, Vol. 71 ›› Issue (4): 1588-1596.DOI: 10.11949/0438-1157.20190837
收稿日期:
2019-07-22
修回日期:
2019-10-13
出版日期:
2020-04-05
发布日期:
2020-04-05
通讯作者:
王志奇
作者简介:
王志奇(1979—),男,博士,副教授,基金资助:
Zhiqi WANG(),Ni HE,Lan LUO,Xiaoxia XIA,Qingsong ZUO
Received:
2019-07-22
Revised:
2019-10-13
Online:
2020-04-05
Published:
2020-04-05
Contact:
Zhiqi WANG
摘要:
针对新型混合工质R245fa/R141b,开展水平光滑管(外径10 mm)内工质沸腾换热特性的实验研究,对比纯工质与混合工质的换热性能及4种常用关联式的预测精度。结果表明:纯工质与混合工质的沸腾传热系数均随质量流速和热通量的增加而增大,随饱和压力的增加而减小;随干度的增加,沸腾传热系数均先增大后减小,即存在“过渡干度”,且混合工质的过渡干度大于纯工质;干度小于0.55时,混合工质传热系数小于纯工质;干度大于0.55后,混合工质的传热系数更高;随R245fa质量分数的增加,混合工质的沸腾传热系数增大。在所选关联式中,Gungor-Winterton关联式能准确地预测工质在光滑管内的沸腾换热特性,平均相对误差为16.67%。
中图分类号:
王志奇, 贺妮, 罗兰, 夏小霞, 左青松. 水平管内R245fa/R141b沸腾换热特性的实验研究[J]. 化工学报, 2020, 71(4): 1588-1596.
Zhiqi WANG, Ni HE, Lan LUO, Xiaoxia XIA, Qingsong ZUO. Experimental investigation on flow boiling heat transfer of R245fa/R141b in horizontal smooth tube[J]. CIESC Journal, 2020, 71(4): 1588-1596.
图1 水平管内流动沸腾特性实验系统流程图1—立式多级离心泵;2—干燥过滤器;3—节流阀;4—质量流量计;5—预热段;6—视镜;7—实验段;8—石英玻璃视镜;9—蒸发压力调节阀;10—冷凝器;11—储液罐;12—调压器
Fig.1 Flow chart of flow boiling experimental system in horizontal tube
测量仪表 | 型号 | 量程 | 精度 |
---|---|---|---|
质量流量计 | DMF-1-3-A | 0 ~ 500 kg/h | 0.2% |
热电偶 | T型 | 0 ~ 200℃ | ±0.1℃ |
精密压力表 | YB-150B | 0 ~ 1.6 MPa | 0.25% |
压力变送器 | PPM-T132A | 0 ~ 1.6 MPa | 0.5%FS |
差压变送器 | PPM-T3051 | 0 ~ 50 kPa | 0.1%FS |
数字万用表 | VC980+ | 0 ~ 200 V 0 ~ 20A | 0.5% |
表1 实验测量仪表主要参数
Table 1 Main parameters of measurement devices
测量仪表 | 型号 | 量程 | 精度 |
---|---|---|---|
质量流量计 | DMF-1-3-A | 0 ~ 500 kg/h | 0.2% |
热电偶 | T型 | 0 ~ 200℃ | ±0.1℃ |
精密压力表 | YB-150B | 0 ~ 1.6 MPa | 0.25% |
压力变送器 | PPM-T132A | 0 ~ 1.6 MPa | 0.5%FS |
差压变送器 | PPM-T3051 | 0 ~ 50 kPa | 0.1%FS |
数字万用表 | VC980+ | 0 ~ 200 V 0 ~ 20A | 0.5% |
实验参数 | 相对不确定度/% |
---|---|
T | 0.224 |
p | 2.687 |
G | 0.531 |
q | 5.431 |
hexp | 11.493 |
xin | 5.434 |
xout | 7.688 |
表2 实验主要参数最大相对不确定度
Table 2 Maximum relative uncertainty of main parameters of experiment
实验参数 | 相对不确定度/% |
---|---|
T | 0.224 |
p | 2.687 |
G | 0.531 |
q | 5.431 |
hexp | 11.493 |
xin | 5.434 |
xout | 7.688 |
图5 不同质量流速下R245fa/R141b (0.5/0.5) 的沸腾传热系数随干度的变化
Fig.5 Boiling heat transfer coefficient of R245fa/R141b (0.5/0.5) with vapor quality at different mass velocities
图6 不同热通量下R245fa/R141b (0.5/0.5) 的沸腾传热系数随干度的变化
Fig.6 Boiling heat transfer coefficient of R245fa/R141b (0.5/0.5) with vapor quality at different heat flux
图7 不同饱和压力下R245fa/R141b (0.5/0.5) 的沸腾传热系数随干度的变化
Fig.7 Boiling heat transfer coefficient of R245fa/R141b (0.5/0.5) with vapor quality at different saturation pressure
关联式 | MAD/% | 30%以内 数据点/% | 25%以内 数据点/% |
---|---|---|---|
Gungor-Winterton[ | 16.76 | 82.74 | 75.11 |
Liu-Winterton[ | 17.62 | 84.34 | 77.69 |
Zhang[ | 38.51 | 52.33 | 47.13 |
Zou[ | 17.94 | 84.21 | 77.22 |
表3 光滑管内沸腾传热系数关联式预测精度
Table 3 Predictive accuracy of correlation for boiling heat transfer coefficient in smooth tubes
关联式 | MAD/% | 30%以内 数据点/% | 25%以内 数据点/% |
---|---|---|---|
Gungor-Winterton[ | 16.76 | 82.74 | 75.11 |
Liu-Winterton[ | 17.62 | 84.34 | 77.69 |
Zhang[ | 38.51 | 52.33 | 47.13 |
Zou[ | 17.94 | 84.21 | 77.22 |
1 | Mahmoudi A, Fazli M, Mora M R. A recent review of waste heat recovery by Organic Rankine Cycle[J]. Applied Thermal Engineering, 2018, 143: 660-675. |
2 | Rahbar K, Mahmoud S, Al-Dadah R K, et al. Review of organic Rankine cycle for small-scale applications[J]. Energy Conversion and Management, 2017, 34(15): 135-155. |
3 | 王志奇, 周乃君, 夏小霞, 等. 有机朗肯循环发电系统的多目标参数优化[J]. 化工学报, 2013, 64(5): 1710-1716. |
Wang Z Q, Zhou N J, Xia X X, et al. Multi-objective parametric optimization of power generation system based on organic Rankine cycle[J]. CIESC Journal, 2013, 64(5): 1710-1716. | |
4 | Sun H C, Qin J, Hung T C, et al. Effect of flow losses in heat exchangers on the performance of organic Rankine cycle[J]. Energy, 2019, 172: 391-400. |
5 | 李鹏, 梅中恺, 韩中合, 等. 考虑蒸发器压降的有机朗肯循环性能分析[J]. 动力工程学报, 2019, 39(1): 79-84. |
Li P, Mei Z K, Han Z H, et al. Performance analysis of an organic Rankine cycle considering evaporator pressure drop[J]. Journal of Chinese Society of Power Engineering, 2019, 39(1): 79-84. | |
6 | 王夺, 赵英汝, 李宁, 等. 工质R245fa水平管内流动沸腾换热的试验研究[J]. 流体机械, 2017, 45(4): 54-57. |
Wang D, Zhao Y Y, Li N, et al. The experimental study on flow boiling heat transfer of working fluid R245fa in horizontal tube[J]. Fluid Machinery, 2017, 45(4): 54-57. | |
7 | 黄晓艳, 王华, 王辉涛. R245fa传热特性的实验研究[J]. 武汉理工大学学报, 2011, 33(3): 67-71. |
Huang X Y, Wang H, Wang H T. Experimental study on evaporating heat transfer characteristics of HFC-245fa[J]. Journal of Wuhan University of Technology, 2011, 33(3): 67-71. | |
8 | 戴源德, 林秦汉, 邹思凯, 等. R290在水平光滑管内的沸腾换热[J]. 化工学报, 2017, 68(9): 3420-3426. |
Dai Y D, Lin Q H, Zou S K, et al. Boiling heat transfer performances of R290 in smooth horizontal tubes[J]. CIESC Journal, 2017, 68(9): 3420-3426. | |
9 | Lillo G, Mastrullo R, Mauro A W, et al. Flow boiling of R1233zd(E) in a horizontal tube: experiments, assessment and correlation for asymmetric annular flow[J]. International Journal of Heat and Mass Transfer, 2019, 129: 547-561. |
10 | Zhang Y, Tian R, Dai X Y, et al. Experimental study of R134a flow boiling in a horizontal tube for evaporator design under typical Organic Rankine Cycle pressures[J]. International Journal of Heat and Fluid Flow, 2018, 71: 210-219 |
11 | 姜林林, 柳建华, 张良, 等. 水平微细管内CO2流动沸腾换热特性[J]. 化工学报, 2018, 69(4): 1428-1436. |
Jiang L L, Liu J H, Zhang L, et al. Flow boiling heat transfer characteristics of CO2 in horizontal micro-tube[J]. CIESC Journal, 2018, 69(4): 1428-1436. | |
12 | Liu Z, Winterton R H S. A general correlation for saturated and subcooled flow boiling in tubes and annuli, based on a nucleate pool boiling equation[J]. International Journal of Heat and Mass Transfer, 1991, 34(11): 2759-2766. |
13 | Yang Z Q, Gong M Q, Chen G F, et al. Two-phase flow patterns, heat transfer and pressure drop characteristics of R600a during flow boiling inside a horizontal tube[J]. Applied Thermal Engineering, 2017, 120: 654-671. |
14 | Liu C W, Gao T. Off-design performance analysis of basic ORC, ORC using zeotropic mixtures and composition-adjustable ORC under optimal control strategy[J]. Energy, 2019, 171: 95-108. |
15 | Lecompt S, Ameel B, Ziviani D. Exergy analysis of zeotropic mixtures as working fluids in Organic Rankine Cycles[J]. Energy Conversion and Management, 2014, 85: 727-739. |
16 | 胡自成, 马虎根, 宋新南. 水平细圆管内非共沸混合工质的流动沸腾[J]. 化工学报, 2006, 57(11): 2577-2581. |
Hu Z C, Ma H G, Song X N. Flow boiling heat transfer of non-azeotropic refrigerant mixtures in horizontal mini-scale tube[J]. Journal of Chemical Industry and Engineering(China), 2006, 57(11): 2577-2581. | |
17 | Li M X, Dang C B, Hiharab E. Flow boiling heat transfer of HFO1234yf and R32 refrigerant mixtures in a smooth horizontal tube(Ⅰ) : Experimental investigation[J]. International Journal of Heat and Mass Transfer, 2012, 55: 3437-3446. |
18 | Guo C, Wang J, Du X Z, et al. Experimental flow boiling characteristics of R134a/R245fa mixture inside smooth horizontal tube[J]. Applied Thermal Engineering, 2016, 103: 901-908. |
19 | Anowar H M, Onaka Y, Hasan M M, et al. Heat transfer during evaporation of R1234ze(E), R32, R410A and a mixture of R1234ze(E) and R32 inside a horizontal smooth tube[J]. International Journal of Refrigeration, 2013, 36: 465 -477. |
20 | 吴晓敏, 赵然, 魏兆福, 等. CO2/丙烷混合工质水平管内流动沸腾换热特性研究[J]. 工程热物理学报, 2013, (4): 706-709. |
Wu X M, Zhao R, Wei Z F, et al. Experimental studies on flow boiling heat transfer of R744/R290 mixtures in a horizontal tube[J]. Journal of Engineering Thermophysics, 2013, (4): 706-709. | |
21 | Yang Z Q, Chen G F, Zhao Y X, et al. Experimental study on flow boiling heat transfer of a new azeotropic mixture of R1234ze(E)/R600a in a horizontal tube[J]. International Journal of Refrigeration, 2018, 93: 224-235. |
22 | Zou X, Gong M Q, Chen G F, et al. Experimental study on saturated flow boiling heat transfer of R170/R290 mixtures in a horizontal tube[J]. International Journal of Refrigeration, 2010, 33: 371-380. |
23 | Gungor K E, Winterton R H S. Simplified general correlation for saturated flow boiling and comparisons with data[J]. Chemical Engineering Research and Design, 1987, 65(2): 148-156. |
24 | Shah M M. A method for predicting heat transfer during boiling of mixtures in plain tubes[J]. Applied Thermal Engineering, 2015, 89: 812-821. |
25 | Kajurek J, Rusowicz A, Grzebielec A, et al. Selection of refrigerants for a modified organic Rankine cycle[J]. Energy, 2019, 168: 1-8. |
26 | Wang Y Z, Zhao J, Wang Y, et al. Multi-objective optimization and grey relational analysis on configurations of organic Rankine cycle[J]. Applied Thermal Engineering, 2017, 114: 1355-1363. |
27 | Dittus F W, Boelter L M K. Heat transfer in automobile radiators of the tubular type[J]. International Communications in Heat and Mass Transfer, 1985, 12(1): 3-22. |
28 | Moffat R J. Describing the uncertainties in experimental results[J]. Experimental Fluid Thermal Science, 1998, 1(1): 3-17. |
29 | Zhang L, Hihara E, Saito T. Boiling heat transfer of a ternary refrigerant mixture inside horizontal smooth tube[J]. International Journal of Heat and Mass Transfer, 1997, 40: 2009-2017. |
[1] | 晁京伟, 许嘉兴, 李廷贤. 基于无管束蒸发换热强化策略的吸附热池的供热性能研究[J]. 化工学报, 2023, 74(S1): 302-310. |
[2] | 程成, 段钟弟, 孙浩然, 胡海涛, 薛鸿祥. 表面微结构对析晶沉积特性影响的格子Boltzmann模拟[J]. 化工学报, 2023, 74(S1): 74-86. |
[3] | 宋瑞涛, 王派, 王云鹏, 李敏霞, 党超镔, 陈振国, 童欢, 周佳琦. 二氧化碳直接蒸发冰场排管内流动沸腾换热数值模拟分析[J]. 化工学报, 2023, 74(S1): 96-103. |
[4] | 张双星, 刘舫辰, 张义飞, 杜文静. R-134a脉动热管相变蓄放热实验研究[J]. 化工学报, 2023, 74(S1): 165-171. |
[5] | 张义飞, 刘舫辰, 张双星, 杜文静. 超临界二氧化碳用印刷电路板式换热器性能分析[J]. 化工学报, 2023, 74(S1): 183-190. |
[6] | 陈爱强, 代艳奇, 刘悦, 刘斌, 吴翰铭. 基板温度对HFE7100液滴蒸发过程的影响研究[J]. 化工学报, 2023, 74(S1): 191-197. |
[7] | 刘明栖, 吴延鹏. 导光管直径和长度对传热影响的模拟分析[J]. 化工学报, 2023, 74(S1): 206-212. |
[8] | 王志国, 薛孟, 董芋双, 张田震, 秦晓凯, 韩强. 基于裂隙粗糙性表征方法的地热岩体热流耦合数值模拟与分析[J]. 化工学报, 2023, 74(S1): 223-234. |
[9] | 江河, 袁俊飞, 王林, 邢谷雨. 均流腔结构对微细通道内相变流动特性影响的实验研究[J]. 化工学报, 2023, 74(S1): 235-244. |
[10] | 吴延鹏, 刘乾隆, 田东民, 陈凤君. 相变材料与热管耦合的电子器件热管理研究进展[J]. 化工学报, 2023, 74(S1): 25-31. |
[11] | 齐聪, 丁子, 余杰, 汤茂清, 梁林. 基于选择吸收纳米薄膜的太阳能温差发电特性研究[J]. 化工学报, 2023, 74(9): 3921-3930. |
[12] | 李科, 文键, 忻碧平. 耦合蒸气冷却屏的真空多层绝热结构对液氢储罐自增压过程的影响机制研究[J]. 化工学报, 2023, 74(9): 3786-3796. |
[13] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[14] | 王玉兵, 李杰, 詹宏波, 朱光亚, 张大林. R134a在菱形离散肋微小通道内的流动沸腾换热实验研究[J]. 化工学报, 2023, 74(9): 3797-3806. |
[15] | 洪瑞, 袁宝强, 杜文静. 垂直上升管内超临界二氧化碳传热恶化机理分析[J]. 化工学报, 2023, 74(8): 3309-3319. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||