1 |
Collins A. The global risks report 2019[R]. Switzerland: World Economic Forum, 2019.
|
2 |
郑智颖, 李凤臣, 李倩, 等. 海水淡化技术应用研究及发展现状[J]. 科学通报, 2016, 61(21): 2344-2370.
|
|
Zheng Z Y, Li F C, Li Q, et al. Application research and development status of desalination technology[J]. Chinese Science Bulletin, 2016, 61(21): 2344-2370.
|
3 |
Elimelech M, Phillip W A. The future of seawater desalination energy, technology, and the environment[J]. Science, 2011, 333(6043): 712-717.
|
4 |
高从堦, 周勇, 刘立芬. 反渗透海水淡化技术现状和展望[J]. 海洋技术学报, 2016, 35(1): 1-12.
|
|
Gao C J, Zhou Y, Liu L F. Status and prospect of reverse osmosis desalination technology[J]. Ocean Technology, 2016, 35(1): 1-12.
|
5 |
Greenlee L F, Lawler D F, Freeman B D, et al. Reverse osmosis desalination: water sources, technology, and today's challenges[J]. Water Research, 2009, 43(9): 2317-2348.
|
6 |
杨飞黄. 电渗析(ED)技术和电去离子技术(EDI)的应用研究[J]. 中国新技术新产品, 2015, 192(5): 42-44.
|
|
Yang F H. Application research of electrodialysis technology and electrodeionization technology[J]. China New Technologies and Products, 2015, 192(5): 42-44.
|
7 |
颜海洋, 汪耀明, 蒋晨啸, 等. 离子膜电渗析在高盐废水“零排放”中的应用、机遇与挑战[J]. 化工进展, 2019, 38(1): 672-681.
|
|
Yan H Y, Wang Y M, Jiang C X, et al. Application, opportunities and challenges of ion membrane electrodialysis in zero discharge of high-salt wastewater[J]. Chemical Industry and Engineering Progress, 2019, 38(1): 672-681.
|
8 |
Oren Y. Capacitive delonization (CDI) for desalination and water treatment—past, present and future (a review)[J]. Desalination, 2008, 228(1/2/3): 10-29.
|
9 |
Anderson M A, Cudero A L, Palma J. Capacitive deionization as an electrochemical means of saving energy and delivering clean water. Comparison to present desalination practices: Will it compete?[J]. Electrochimica Acta, 2010, 55(12): 3845-3856.
|
10 |
Suss M E, Porada S, Sun X, et al. Water desalination via capacitive deionization: what is it and what can we expect from it?[J]. Energy & Environmental Science, 2015, 8(8): 2296-2319.
|
11 |
Tang K, Hong T Z X, You L, et al. Carbon–metal compound composite electrodes for capacitive deionization: synthesis, development and applications[J]. Journal of Materials Chemistry A, 2019, 7(47): 26693-26743.
|
12 |
Porada S, Zhao R, van der Wal A, et al. Review on the science and technology of water desalination by capacitive deionization[J]. Progress in Materials Science, 2013, 58(8): 1388-1442.
|
13 |
Zhu G, Wang W, Li X, et al. Design and fabrication of a graphene/carbon nanotubes/activated carbon hybrid and its application for capacitive deionization[J]. RSC Advances, 2016, 6(7): 5817-5823.
|
14 |
Gabelich C J, Tran T D, Suffet I H. Electrosorption of inorganic salts from aqueous solution using carbon aerogels[J]. Environmental Science & Technology, 2002, 36(13): 3010-3019.
|
15 |
Xu P, Drewes J E, Heil D, et al. Treatment of brackish produced water using carbon aerogel-based capacitive deionization technology[J]. Water Research, 2008, 42(10/11): 2605-2617.
|
16 |
Zou L, Morris G, Qi D. Using activated carbon electrode in electrosorptive deionisation of brackish water[J]. Desalination, 2008, 225(1/2/3): 329-340.
|
17 |
Li Y, Liu Y, Shen J, et al. Design of nitrogen-doped cluster-like porous carbons with hierarchical hollow nanoarchitecture and their enhanced performance in capacitive deionization[J]. Desalination, 2018, 430: 45-55.
|
18 |
Li Y, Liu Y, Wang M, et al. Phosphorus-doped 3D carbon nanofiber aerogels derived from bacterial-cellulose for highly-efficient capacitive deionization[J]. Carbon, 2018, 130: 377-383.
|
19 |
Wang C, Liu C, Li J, et al. Electrospun metal-organic framework derived hierarchical carbon nanofibers with high performance for supercapacitors[J]. Chemical Communications, 2017, 53(10): 1751-1754.
|
20 |
Wang M, Xu X, Tang J, et al. High performance capacitive deionization electrodes based on ultrathin nitrogen-doped carbon/graphene nano-sandwiches[J]. Chemical Communications, 2017, 53(78): 10784-10787.
|
21 |
Gao T, Zhou F, Ma W, et al. Metal-organic-framework derived carbon polyhedron and carbon nanotube hybrids as electrode for electrochemical supercapacitor and capacitive deionization[J]. Electrochimica Acta, 2018, 263: 85-93.
|
22 |
Shen J, Li Y, Wang C, et al. Hollow ZIFs-derived nanoporous carbon for efficient capacitive deionization[J]. Electrochimica Acta, 2018, 273: 34-42.
|
23 |
Ding M, Shi W, Guo L, et al. Bimetallic metal-organic framework derived porous carbon nanostructures for high performance membrane capacitive desalination[J]. Journal of Materials Chemistry A, 2017, 5(13): 6113-6121.
|
24 |
Wang Z, Yan T, Fang J, et al. Nitrogen-doped porous carbon derived from a bimetallic metal-organic framework as highly efficient electrodes for flow-through deionization capacitors[J]. Journal of Materials Chemistry A, 2016, 4(28): 10858-10868.
|
25 |
Xu X, Wang M, Liu Y, et al. Metal-organic framework-engaged formation of a hierarchical hybrid with carbon nanotube inserted porous carbon polyhedra for highly efficient capacitive deionization[J]. Journal of Materials Chemistry A, 2016, 4(15): 5467-5473.
|
26 |
Zhang J, Fang J, Han J, et al. N, P, S co-doped hollow carbon polyhedra derived from MOF-based core-shell nanocomposites for capacitive deionization[J]. Journal of Materials Chemistry A, 2018, 6(31): 15245-15252.
|
27 |
Wang C, Kaneti Y V, Bando Y, et al. Metal-organic framework-derived one-dimensional porous or hollow carbon-based nanofibers for energy storage and conversion[J]. Materials Horizons, 2018, 5(3): 394-407.
|
28 |
Li Y, Kim J, Wang J, et al. High performance capacitive deionization using modified ZIF-8-derived, N-doped porous carbon with improved conductivity[J]. Nanoscale, 2018, 10(31): 14852-14859.
|
29 |
Wang G, Dong Q, Ling Z, et al. Hierarchical activated carbon nanofiber webs with tuned structure fabricated by electrospinning for capacitive deionization[J]. Journal of Materials Chemistry, 2012, 22(41): 21819-21823.
|
30 |
Wang G, Dong Q, Wu T T, et al. Ultrasound-assisted preparation of electrospun carbon fiber/graphene electrodes for capacitive deionization: importance and unique role of electrical conductivity[J]. Carbon, 2016, 103: 311-317.
|
31 |
Liu L, Liao L, Meng Q, et al. High performance graphene composite microsphere electrodes for capacitive deionisation[J]. Carbon, 2015, 90: 75-84.
|