1 |
Lee A H W, Jones J W. Modeling of an ice-on-coil thermal energy storage system [J]. Energy Conversion and Management, 1995, 37(10): 1493-1507.
|
2 |
Soltan B K, Ardehali M M. Numerical simulation of water solidification phenomenon for ice-on-coil thermal energy storage application [J]. Energy Conversion and Management, 2003, 44: 85-92.
|
3 |
Arcuri B, Spataru C, Barrett M. Evaluation of ice thermal energy storage (ITES) for commercial buildings in cities in Brazil [J]. Sustainable Cities and Society, 2017, 29: 178-192.
|
4 |
Zheng Z J, Xu Y, Li M J. Eccentricity optimization of a horizontal shell-and-tube latent-heat thermal energy storage unit based on melting and melting-solidifying performance [J]. Applied Energy, 2018, 220: 447-454.
|
5 |
Beghi A, Cecchinato L, Rampazzo M, et al. Energy efficient control of HVAC systems with ice cold thermal energy storage [J]. Journal of Process Control, 2014, 6(24): 773-781.
|
6 |
Sanaye S, Hekmatian M. Ice thermal energy storage (ITES) for air-conditioning application in full and partial load operating modes [J]. International Journal of Refrigeration, 2016, 66: 181-197.
|
7 |
Lohrasbi S, Miry S Z, Gorji-Bandpy M, et al. Performance enhancement of finned heat pipe assisted latent heat thermal energy storage system in the presence of nano-enhanced H2O as phase change material [J]. International Journal of Hydrogen Energy, 2017, 10(42): 6526-6546.
|
8 |
Darzi A A R, Jourabian M, Farhadi Ma. Melting and solidification of PCM enhanced by radial conductive fins and nanoparticles in cylindrical annulus [J]. Energy Conversion and Management, 2016, 118: 253-263.
|
9 |
Elbahjaoui R, Qarnia H E. Performance evaluation of a solar thermal energy storage system using nanoparticle-enhanced phase change material [J]. International Journal of Hydrogen Energy, 2019, 3(44): 2013-2028.
|
10 |
Nóbreg C R E S, Ismail K A R, Lino F A M. Enhancement of ice formation around vertical finned tubes for cold storage applications [J]. International Journal of Refrigeration, 2019, 99: 251-263.
|
11 |
Jannesari H, Abdollahi N. Experimental and numerical study of thin ring and annular fin effects on improving the ice formation in ice-on-coil thermal storage systems [J]. Applied Energy, 2017, 189: 369-384.
|
12 |
Rathod M K, Banerjee J. Thermal performance enhancement of shell and tube latent heat storage unit using longitudinal fins [J]. Applied Thermal Engineering, 2015, 75: 1084-1092.
|
13 |
Bai Q S, Guo Z X, Cui X, et al. Experimental investigation on the solidification rate of water in open-cell metal foam with copper fins [J]. Energy Procedia, 2018, 152: 210-214.
|
14 |
Martinelli M, Bentivoglio F, Caron-Soupart A, et al. Experimental study of a phase change thermal energy storage with copper foam [J]. Applied Thermal Engineering, 2016, 101: 247-261.
|
15 |
Sait H H. Experimental study of water solidification phenomenon for ice-on-coil thermal energy storage application utilizing falling film [J]. Applied Thermal Engineering, 2019, 146: 135-145.
|
16 |
Sait H H. Heat transfer analysis and effects of feeding tubes arrangement, falling film behavior and backsplash on ice formation around horizontal tubes bundles [J]. Energy Conversion and Management, 2013, 73: 317-328.
|
17 |
Abhishek A, Kumar B, Kim M H, et al. Comparison of the performance of ice-on-coil LTES tanks with horizontal and vertical tubes [J]. Energy and Buildings, 2019, 183: 45-53.
|
18 |
Shen G, Wang X L, Chan A. Experimental investigation of heat transfer characteristics in a vertical multi-tube latent heat thermal energy storage system [J]. Energy Procedia, 2019, 160: 332-339.
|
19 |
Sodhi G S, Vigneshwaran K, Jaiswal A K, et al. Assessment of heat transfer characteristics of a latent heat thermal energy storage system: multi tube design [J]. Energy Procedia, 2019, 158: 4677-4683.
|
20 |
胡进喜, 陶玉灵. 热管式冰蓄冷空调的运行特性及分析[J]. 热管技术与应用, 2004, (3): 11-13.
|
|
Hu J X, Tao Y L. Operation characteristics and analysis of ice storage based on heat pipe [J]. Technology and Application of Heat Pipe, 2004, (3): 11-13.
|
21 |
宋庆武, 王世清, 张岩, 等. 热管管外结冰过程研究[J]. 保鲜与加工, 2007, (2): 20-23.
|
|
Song Q W, Wang S Q, Zhang Y, et al. Study on the process of ice formation outside heat pipe [J]. Storage and Process, 2007, (2): 20-23.
|
22 |
王世清, 宋庆武, 张岩, 等. 基于热管的自然冷源制冰技术方案的初步试验[J]. 农业工程学报, 2008, 24(11): 23-25.
|
|
Wang S Q, Song Q W, Zhang Y, et al. Experimental study on natural cold ice storage based on heat pipe [J]. Transactions of the Chinese Society of Agricultural Engineering, 2008, 24(11): 23-25.
|
23 |
王世清, 张岩, 姜文利, 等. 热管技术在自然冷源蓄冷中的应用[J]. 农业工程学报, 2010, 26(4): 312-316.
|
|
Wang S Q, Zhang Y, Jiang W L, et al. Application of natural cold storage based on heat pipe [J]. Transactions of the Chinese Society of Agricultural Engineering, 2010, 26(4): 312-316.
|
24 |
周向阳, 潘阳, 熊国华. 单根热管蓄冰理论研究[C]//中国建筑学会建筑热能动力分会第十六届学术交流大会论文集. 2009.Zhou X Y, Pan Y, Xiong G H. Study on ice storage theory based on single heat pipe [C]// Proceedings of the 16th Academic Exchange Conference of the Architectural Thermal Energy Branch of the Chinese Architectural Society. 2009.
|
25 |
周向阳, 潘阳. 热管冰蓄冷结构设计[J]. 制冷技术, 2011, 39(2): 69-72.
|
|
Zhou X Y, Pan Y. Design of ice storage structure based on heat pipe [J]. Refrigeration Technology, 2011, 39(2): 69-72.
|
26 |
钟春, 潘阳. 热管蓄冰过程的数值模拟研究[J] , 江西能源, 2009, (2): 38-40.
|
|
Zhong C, Pan Y. Numerical simulation of ice storage based on heat pipe [J]. Jiangxi Energy, 2009, (2): 38-40.
|
27 |
刘仍通. 热管冰蓄冷实验研究与数值计算[D]. 南昌: 华东交通大学, 2011.
|
|
Liu R T. Experimental study and numerical calculation of ice storage based on heat pipe [D]. Nanchang: East China Jiaotong University, 2011.
|
28 |
刘金光, 熊旭波, 王世清, 等. 低温热管中无氟制冷剂HCR-22蓄冷效果[J]. 农业工程学报, 2016, 32(19): 268-273.
|
|
Liu J G, Xiong X B, Wang S Q, et al. Cooling effect of fluorine free refrigerant HCR-22 used in heat pipe [J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(19): 268-273.
|
29 |
Xu X F, Zhang X L, Munyalo J M. Key technologies and research progress on enhanced characteristics of cold thermal energy storage [J]. Journal of Molecular Liquids. 2019, 278: 428-437.
|
30 |
赵耀华, 王宏燕, 刁彦华, 等. 平板微热管阵列及其传热特性[J]. 化工学报, 2011, 62(2): 336-343.
|
|
Zhao Y H, Wang H Y, Diao Y H, et al. Heat transfer characteristics of flat micro-heat pipe arrays [J]. CIESC Journal, 2011, 62(2): 336-343.
|
31 |
康亚盟. 平板微热管阵列相变蓄热装置强化换热特性研究[D]. 北京: 北京工业大学, 2017.
|
|
Kang Y M. Experimental investigation on heat transfer performance of a new type of flat micro-heat pipe array latent thermal energy storage device [D]. Beijing: Beijing University of Technology, 2017.
|