化工学报 ›› 2020, Vol. 71 ›› Issue (S1): 227-235.DOI: 10.11949/0438-1157.20191315
收稿日期:
2019-11-04
修回日期:
2020-01-07
出版日期:
2020-04-25
发布日期:
2020-04-25
通讯作者:
黎义斌
作者简介:
黎义斌(1977—),男,博士,副教授,基金资助:
Yibin LI1,2(),Yajuan SONG1,Xiaohui DAI1,Zhenggui LI3
Received:
2019-11-04
Revised:
2020-01-07
Online:
2020-04-25
Published:
2020-04-25
Contact:
Yibin LI
摘要:
为了研究不同推进式桨叶对搅拌反应器内气液两相混合特性的影响,以某搅拌反应器的推进式桨叶为研究对象,将搅拌聚合物简化为含5%气体的清水介质,基于螺旋桨叶片设计方法和CFD流场仿真技术,采用VOF多相流模型和RNG k-ε 湍流模型,对四种推进式桨叶内部气液两相流动进行数值分析,实现了推进式桨叶参数设计和性能优化。分析设计转速在400 r/min时的径向速度、0~18 s的时间范围内气体体积分数的变化、无量纲气体体积分数以及无量纲轴向速度,来评价四种推进式搅拌反应器搅拌性能的剪切、混合、分散。研究结果表明:变螺旋角(FDC-450-γ)非对称桨叶的流动更均匀、混合速率更快和剪切分散能力能强。通过对四种不同推进式桨叶的比较分析,为后续的研究和工程实践奠定了基础。
中图分类号:
黎义斌, 宋亚娟, 歹晓晖, 李正贵. 不同推进式桨叶对搅拌反应器内气液两相混合特性的影响[J]. 化工学报, 2020, 71(S1): 227-235.
Yibin LI, Yajuan SONG, Xiaohui DAI, Zhenggui LI. Effects of different propeller blades on gas-liquid two-phase mixing characteristics in stirred reactor[J]. CIESC Journal, 2020, 71(S1): 227-235.
r/R | (x2/bm)/% | (x1/bm)/% | (b/bm)/% | (b1/b)/% |
---|---|---|---|---|
0.2 | 28.68 | 46.99 | 75.67 | 35 |
0.3 | 32.67 | 51.24 | 83.91 | 35 |
0.4 | 36.62 | 54.91 | 91.53 | 35 |
0.5 | 40.53 | 56.52 | 97.05 | 35.5 |
0.6 | 44.18 | 55.82 | 100 | 38.9 |
0.7 | 46.97 | 52.22 | 99.19 | 44.2 |
0.8 | 48.22 | 44.63 | 92.85 | 47.8 |
0.9 | 45.46 | 30.31 | 75.77 | 50 |
表1 非对称形桨叶的横截面宽度bi的确定
Table 1 Cross-sectional width bi of asymmetric blades
r/R | (x2/bm)/% | (x1/bm)/% | (b/bm)/% | (b1/b)/% |
---|---|---|---|---|
0.2 | 28.68 | 46.99 | 75.67 | 35 |
0.3 | 32.67 | 51.24 | 83.91 | 35 |
0.4 | 36.62 | 54.91 | 91.53 | 35 |
0.5 | 40.53 | 56.52 | 97.05 | 35.5 |
0.6 | 44.18 | 55.82 | 100 | 38.9 |
0.7 | 46.97 | 52.22 | 99.19 | 44.2 |
0.8 | 48.22 | 44.63 | 92.85 | 47.8 |
0.9 | 45.46 | 30.31 | 75.77 | 50 |
名称 | 表示方法 | 含义 |
---|---|---|
恒螺旋对称桨叶 | DC-450-32 | |
变螺旋对称桨叶 | DC-450-γ | |
恒螺旋非对称 桨叶 | FDC-450-32 | |
变螺旋非对称 桨叶 | FDC-450-γ |
表2 四种推进式桨叶的名称简化
Table 2 Simplified names of four propelling blades
名称 | 表示方法 | 含义 |
---|---|---|
恒螺旋对称桨叶 | DC-450-32 | |
变螺旋对称桨叶 | DC-450-γ | |
恒螺旋非对称 桨叶 | FDC-450-32 | |
变螺旋非对称 桨叶 | FDC-450-γ |
1 | 刘宝庆, 郑毅骏, 梁慧力, 等. 剪切变稀体系同心双轴搅拌釜内的气液分散模拟[J]. 化工学报, 2017, 68(6): 2280-2289. |
Liu B Q, Zheng Y J, Liang H L, et al. CFD simulation on shear-thinning gas-liquid dispersion in coaxial mixer[J]. CIESC Journal, 2017, 68(6): 2280-2289. | |
2 | 王峰, 冯鑫, 毛在砂, 等. 搅拌槽内多相流动数值模拟研究进展[J]. 南京工业大学学报(自然科学版), 2009, 31(4): 103-110. |
Wang F, Feng X, Mao Z S, et al. Numerical simulation progress on multiphase flow in stirred tanks[J]. Journal of Nanjing University of Technology (Natural Science Edition), 2009, 31(4): 103-110. | |
3 | Liu B Q, Zhang Y K, Chen M Q, et al. Power consumption and flow field characteristics of a coaxial mixer with a double inner impeller[J]. Chinese Journal of Chemical Engineering, 2015, 23(1): 1-6. |
4 | Dular M, Bajcar T, Slemenik-Pere L, et al. Numerical simulation and experimental study of non-Newtonian mixing flow with a free surface[J]. Brazilian Journal of Chemical Engineering, 2006, 23(4): 473-486. |
5 | Haque J N, Mahmud T, Roberts K J. Modeling turbulent flows with free-surface in unbaffled agitated vessels[J]. Industrial and Engineering Chemistry Research, 2006, 45(8): 2881-2891. |
6 | Mahmud T, Haque J N, Roberts K J, et al. Measurements and modelling of free-surface turbulent flows induced by a magnetic stirrer in an unbaffled stirred tank reactor[J]. Chemical Engineering Science, 2009, 64(20): 4197-4209. |
7 | Glover G M C, Fitzpatrick J J. Modelling vortex formation in an unbaffled stirred tank reactors[J]. Chemical Engineering Journal, 2007, 127(1): 11-22. |
8 | Torré J P, Fletcherb D F, Lasuyec T, et al. An experimental and computational study of the vortex shape in a partially baffled agitated vessel[J]. Chemical Engineering Science, 2007, 62(7): 1915-1926. |
9 | 李挺, 贾卓泰, 张庆华, 等. 几种单层桨搅拌槽内宏观混合特性的比较[J]. 化工学报, 2019, 70(1): 32-38. |
Li T, Jia Z T, Zhang Q H, et al. Comparison of macro-mixing characteristics of a stirred tank with different impellers[J]. CIESC Journal, 2019, 70(1): 32-38. | |
10 | 杨娟, 张庆华, 杨超, 等. 不同组合桨搅拌槽内非牛顿流体的微观混合特性[J]. 过程工程学报, 2019, 19(5): 865-871. |
Yang J, Zhang Q H, Yang C, et al. Micro-mixing characteristics of non-Newtonian fluid in a stirred tank agitated with different impellers [J]. Chin. J. Process Eng. , 2019, 19(5): 865-871. | |
11 | Kawahara A, Sadatomi M, Nei K, et al. Characteristics of two-phase flows in a rectangular microchannel with a T-junction type gas-liquid mixer[J]. Heat Transfer Engineering, 2011, 32(7/8): 585-594. |
12 | Busciglio A, Caputo G, Scargiali F. Free-surface shape in unbaffled stirred vessels: experimental study via digital image analysis[J]. Chemical Engineering Science, 2013, 104: 868-880. |
13 | Mohamed H M, Akimaro K, Michio S. Experimental investigation of gas–non-Newtonian liquid two-phase flows from T-junction mixer in rectangular microchannel[J]. International Journal of Multiphase Flow, 2015, 72: 263-274. |
14 | Sun H Y, Wang W J, Mao Z C. Numerical simulation of the whole three-dimensional flow in a stirred tank with anisotropic algebraic stress model [J]. Chinese Journal of Chemical Engineering, 2002, 10(1): 15-24. |
15 | Chara Z, Kysela B, Konfrst J, et al. Study of fluid flow in baffled vessels stirred by a Rushton standard impeller[J]. Applied Mathematics and Computation, 2016, 272(3): 614-628. |
16 | Liu N N, Wang W, Han J C, et al. A PIV investigation of the effect of disperse phase fraction on the turbulence characteristics of liquid–liquid mixing in a stirred tank[J]. Chemical Engineering Science, 2016, 152: 528-546. |
17 | Yang F L, Zhou S J, An X H. Gas–liquid hydrodynamics in a vessel stirred by dual dislocated-blade Rushton impellers[J]. Chinese Journal of Chemical Engineering, 2015, 23(11): 1746-1754. |
18 | Vlček P, Kysela B, Jirout T, et al. Large eddy simulation of a pitched blade impeller mixed vessel—comparison with LDA measurements[J]. Chemical Engineering Research and Design, 2016, 108(SI):42-48 |
19 | Escamilla-Ruíz I A, Sierra-Espinosa F Z, García J C, et al. Experimental data and numerical predictions of a single-phase flow in a batch square stirred tank reactor with a rotating cylinder agitator[J]. Heat and Mass Transfer, 2017, 53(9): 2933-2949. |
20 | Wang W J, Mao Z S. Numerical simulation of gas-liquid flow in a stirred tank with a Rushton impeller[J]. Chinese Journal of Chemical Engineering, 2002, 10(4): 385-395. |
21 | Roman R V, Tudose R Z. Studies on transfer processes in mixing vessels: effect of particles on gas-liquid mass transfer using modified Rushton turbine agitators[J]. Bioprocess Engineering, 1997, 17(6): 361-365. |
22 | Roman R V, Tudose R Z. Studies on transfer processes in mixing vessels: power consumption of the modified Rushton turbine agitators in three-phase systems[J]. Bioprocess Engineering, 1997, 17(5): 307-316. |
23 | Roman R V, Tudose R Z. Studies on transfer processes in mixing vessels: effect of particles on gas-liquid hydrodynamics using modified Rushton turbine agitators[J]. Bioprocess Engineering, 1997, 16(3): 135-144. |
24 | Liu B, Zhang Y, Chen M, et al. Power consumption and flow field characteristics of a coaxial mixer with a double inner impeller[J]. Chinese Journal of Chemical Engineering, 2015, 23(1): 1-6. |
25 | Bao Y, Li T, Wang D, et al. Discrete element method study of effects of the impeller configuration and operating conditions on particle mixing in a cylindrical mixer[J]. Particuology, 2019, https: //doi. org/10. 1016/j. partic. 2019. 02. 002 |
26 | Reviol T, Kluck S, Böhle M. A new design method for propeller mixers agitating non-Newtonian fluid flow[J]. Chemical Engineering Science, 2018, 190: 320-332. |
27 | 钟天铖, 汤文成, 刘碧茜. 推进式搅拌器固液混合的计算流体力学模拟[J]. 东南大学学报(自然科学版), 2016, 46(4): 713-719. |
Zhong T C, Tang W C, Liu B X. CFD simulation of solid-liquid mixing in stirred vessel by propeller agitator[J]. Journal of Southeast University (Natural Science Edition), 2016, 46(4): 713-719. | |
28 | 刘培坤, 张瑞, 杨兴华, 等. 涡轮式与推进式搅拌釜的数值模拟研究[J]. 化工机械, 2017, 44(1): 84-87+96. |
Liu P K, Zhang R, Yang X H, et al. Analysis of sealing structure reliability for vulcanizing tank connection[J]. Chemical Engineering & Machinery, 2017, 44(1): 84-87+96. | |
29 | 阙甲球. 推进式搅拌器的机械设计[J]. 化工炼油机械, 1983, 12(6): 38-47. |
Que J Q. Mechanical design of propeller agitators[J]. Chemical Refining Machinery, 1983, 12(6): 38-47 | |
30 | Tian F, Shi W D, Jiang H. Comparison of sewage treatment mixer in three pool face boundary conditions[C]// 2nd International Conference on Frontiers of Mechanical Engineering and Materials Engineering (MEME 2013). Hong Kong, China, 2014. |
[1] | 周绍华, 詹飞龙, 丁国良, 张浩, 邵艳坡, 刘艳涛, 郜哲明. 短管节流阀内流动噪声的实验研究及降噪措施[J]. 化工学报, 2023, 74(S1): 113-121. |
[2] | 江河, 袁俊飞, 王林, 邢谷雨. 均流腔结构对微细通道内相变流动特性影响的实验研究[J]. 化工学报, 2023, 74(S1): 235-244. |
[3] | 张思雨, 殷勇高, 贾鹏琦, 叶威. 双U型地埋管群跨季节蓄热特性研究[J]. 化工学报, 2023, 74(S1): 295-301. |
[4] | 肖明堃, 杨光, 黄永华, 吴静怡. 浸没孔液氧气泡动力学数值研究[J]. 化工学报, 2023, 74(S1): 87-95. |
[5] | 温凯杰, 郭力, 夏诏杰, 陈建华. 一种耦合CFD与深度学习的气固快速模拟方法[J]. 化工学报, 2023, 74(9): 3775-3785. |
[6] | 王玉兵, 李杰, 詹宏波, 朱光亚, 张大林. R134a在菱形离散肋微小通道内的流动沸腾换热实验研究[J]. 化工学报, 2023, 74(9): 3797-3806. |
[7] | 袁佳琦, 刘政, 黄锐, 张乐福, 贺登辉. 泡状入流条件下旋流泵能量转换特性研究[J]. 化工学报, 2023, 74(9): 3807-3820. |
[8] | 何松, 刘乔迈, 谢广烁, 王斯民, 肖娟. 高浓度水煤浆管道气膜减阻两相流模拟及代理辅助优化[J]. 化工学报, 2023, 74(9): 3766-3774. |
[9] | 邢雷, 苗春雨, 蒋明虎, 赵立新, 李新亚. 井下微型气液旋流分离器优化设计与性能分析[J]. 化工学报, 2023, 74(8): 3394-3406. |
[10] | 高燕, 伍鹏, 尚超, 胡泽君, 陈晓东. 基于双流体喷嘴的磁性琼脂糖微球的制备及其蛋白吸附性能探究[J]. 化工学报, 2023, 74(8): 3457-3471. |
[11] | 汪林正, 陆俞冰, 张睿智, 罗永浩. 基于分子动力学模拟的VOCs热氧化特性分析[J]. 化工学报, 2023, 74(8): 3242-3255. |
[12] | 岳林静, 廖艺涵, 薛源, 李雪洁, 李玉星, 刘翠伟. 凹坑缺陷对厚孔板喉部空化流动特性影响研究[J]. 化工学报, 2023, 74(8): 3292-3308. |
[13] | 郭雨莹, 敬加强, 黄婉妮, 张平, 孙杰, 朱宇, 冯君炫, 陆洪江. 稠油管道水润滑减阻及压降预测模型修正[J]. 化工学报, 2023, 74(7): 2898-2907. |
[14] | 高金明, 郭玉娇, 鄂承林, 卢春喜. 一种封闭罩内顺流多旋臂气液分离器的分离特性研究[J]. 化工学报, 2023, 74(7): 2957-2966. |
[15] | 何宣志, 何永清, 闻桂叶, 焦凤. 磁液液滴颈部自相似破裂行为[J]. 化工学报, 2023, 74(7): 2889-2897. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||