化工学报 ›› 2020, Vol. 71 ›› Issue (S2): 104-110.DOI: 10.11949/0438-1157.20200162
马兵善1,2(),赵皓辰1,王烨1(),石成志1,王瑞君1,鲁红钰1,常悦1
收稿日期:
2020-02-20
修回日期:
2020-05-26
出版日期:
2020-11-06
发布日期:
2020-11-06
通讯作者:
王烨
作者简介:
马兵善(1984—),男,博士研究生,基金资助:
Bingshan MA1,2(),Haochen ZHAO1,Ye WANG1(),Chengzhi SHI1,Ruijun WANG1,Hongyu LU1,Yue CHANG1
Received:
2020-02-20
Revised:
2020-05-26
Online:
2020-11-06
Published:
2020-11-06
Contact:
Ye WANG
摘要:
传统的数值模拟方法计算量大,计算时间长,很难满足现代工业发展的需求。以扁管管翅式换热器为例,采用适体坐标与最佳正交分解(POD)相结合的方法构建了低阶模型,在等热流边界条件下对扁管管翅式换热器中流动与传热过程进行计算,并将POD计算结果与有限体积法(FVM)计算结果进行了对比。结果表明:POD方法能准确地捕捉到不同数量参数变化情况下的温度场及速度场信息。对于3变量工况重构速度场及温度场的相对偏差平均值的最大值分别为1.90%、0.308%。采用POD方法在保证计算精度的前提下将FVM计算速度最大能提高3093.4倍。研究对于提高扁管管翅式换热器数值设计效率、拓展POD方法的工程应用领域有一定的理论参考价值。
中图分类号:
马兵善, 赵皓辰, 王烨, 石成志, 王瑞君, 鲁红钰, 常悦. 一种扁管管翅式换热器的高效数值设计方法[J]. 化工学报, 2020, 71(S2): 104-110.
Bingshan MA, Haochen ZHAO, Ye WANG, Chengzhi SHI, Ruijun WANG, Hongyu LU, Yue CHANG. A new method of numerical design for flat tube fin heat exchanger[J]. CIESC Journal, 2020, 71(S2): 104-110.
样本数据 | Rea | Tp/mm | S1/mm | 样本个数 |
---|---|---|---|---|
单参数 | A | 5.0 | 40 | 15 |
双参数 | A | B | 40 | 45 |
三参数 | A | B | C | 225 |
表1 样本参数
Table 1 Sample parameters
样本数据 | Rea | Tp/mm | S1/mm | 样本个数 |
---|---|---|---|---|
单参数 | A | 5.0 | 40 | 15 |
双参数 | A | B | 40 | 45 |
三参数 | A | B | C | 225 |
1 | 杜娟. 流体力学方程基于POD方法的降维数值解法研究[D]. 北京: 北京交通大学, 2011. |
Du J. Reduced order modeling based on POD for fluid dynamic equations[D]. Beijing: Beijing Jiaotong University, 2011. | |
2 | 李波, 龚春林, 粟华, 等. 本征正交分解在翼型气动优化中的应用研究[J]. 上海航天, 2017, 34(5): 117-123. |
Li B, Gong C L, Su H, et al. Research and application on proper orthogonal decomposition in aerodynamic optimization of airfoil[J]. Aerospace Shanghai, 2017, 34(5): 117-123. | |
3 | 李庭宇. 黏弹性减阻流动的离散元素POD模型研究[D]. 北京: 中国石油大学, 2017. |
Li T Y. Study on POD-ROM of viscoelastic drag-reducing flow based on the spring-dumbbell model[D]. Beijing: China University of Petroleum, 2017. | |
4 | Wang Y, Sun S Y, Yu B. Acceleration of gas flow simulations in dual-continuum porous media based on the mass-conservation POD method[J]. Energies, 2017, 10(9): 1-17. |
5 | Bubryur K, Tse K T, Akihito Y, et al. Investigation of flow visualization around linked tall buildings with circular sections[J]. Building and Environment, 2019, 153: 60-76. |
6 | Sun Y, Sun S X, Zhang J Y, et al. Reconstruction of wind velocity distribution using POD model[J]. Energy Procedia, 2016, 100: 137-140. |
7 | 王艺, 薛文第, 宇波,等. 双孔双渗介质中气体流动的POD模型研究[J]. 工程热物理学报, 2018, 39(5): 1063-1069. |
Wang Y, Xue W D, Yu B, et al. POD modeling for gas flow in dual-porosity dual-permeability porous media[J]. Journal of Engineering Thermophysics, 2018, 39(5): 1063-1069. | |
8 | 李魁, 邓小龙, 杨希祥, 等. 基于本征正交分解的平流层风场建模与预测[J]. 北京航空航天大学学报, 2018, 44(9): 2013-2020. |
Li K, Deng X L, Yang X X, et al. Modeling and prediction of stratospheric wind field based on proper orthogonal decomposition[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(9): 2013-2020. | |
9 | 王洋, 袁军娅, 王宏兴. 基于代理模型和线性近似的快速气动热边界求解方法[J]. 导弹与航天运载技术, 2018,(4): 11-17. |
Wang Y, Yuan J Y, Wang H X. Fast method to determine thermal boundary based on surrogate model and linear approximation[J]. Missiles and Space Vehicles, 2018,(4): 11-17. | |
10 | 张佳佳. 舰船甲板气速度场量化品质评估及POD重构研究[D]. 大连: 大连海事大学, 2018. |
Zhang J J. Research on quantitative quality evaluation and POD reconstruction of ship deck airflow field[D]. Dalian: Dalian Maritime University, 2018. | |
11 | Luo Z D, Li H, Zhou Y J, et al. A reduced FVE formulation based on POD method and error analysis for two-dimensional viscoelastic problem[J]. Journal of Mathematical Analysis and Applications, 2012, 385(1): 310-321. |
12 | Luo Z D, Li L, Sun P. A reduced-order MFE formulation based on POD method for parabolic equations[J]. Acta Mathematica Scientia,2013, 33(5): 1471-1484. |
13 | Han D X, Yu B, Wang Y, et al. Fast thermal simulation of a heated crude oil pipeline with a BFC-Based POD reduced-order model[J]. Applied Thermal Engineering, 2015, 88: 217-229. |
14 | 张文轲, 张劲军, 宇波. 热油管道油温波动随机数值模拟及影响因素敏感性分析[J]. 中国石油大学学报(自然科学版), 2011, 35(2): 141-146. |
Zhang W K, Zhang J J, Yu B. Stochastic numerical simulation on oil temperature fluctuations of hot crude pipe lines and sensitivity analysis to related factors[J]. Journal of China University of Petroleum (Edition of Natural Science), 2011, 35(2): 141-146. | |
15 | 韩东旭. 基于适体坐标的POD低阶模型研究及其在热油管道中的应用[D]. 北京: 中国石油大学, 2016. |
Han D X. Study on BFC based POD reduced-order model and its application on heated oil pipeline[D]. Beijing: China University of Petroleum, 2016. | |
16 | 叶永友, 何承高. 海上风力发电塔脉动风速模拟研究[J]. 价值工程, 2018, 35: 151-153. |
Ye Y Y, He C G. Simulation of fluctuating wind velocity on the offshore wind turbine[J]. Value Engineering, 2018, 35: 151-153. | |
17 | Tanya K V, Geoffrey M O. Model reduction of dynamical systems by proper orthogonal decomposition: error bounds and comparison of methods using snapshots from the solution and the time derivatives[J]. Journal of Computational and Applied Mathematics, 2018, 330: 553-573. |
18 | Deokar R, Shimada M, Lin C, et al. On the treatment of high-frequency issues in numerical simulation for dynamic systems by model order reduction via the proper orthogonal decomposition[J]. Computer Methods in Applied Mechanics and Engineering, 2017, 325: 139-154. |
19 | 张震宇. 风力机翼型动态失速的POD模型降阶方法[J]. 南京航空航天大学学报, 2011, 43(5): 577-580. |
Zhang Z Y. Reduced-order POD model for dynamic stall of wind turbine airfoils[J]. Journal of Nanjing University of Aeronautics& Astronautics, 2011, 43(5): 577-580. | |
20 | Saeed E A, Ahmed R, Daniel L. Damage detection in structural systems utilizing artificial neural networks and proper orthogonal decomposition[J]. Structural Control and Health Monitoring, 2019,26(2): 1-24. |
21 | 罗杰, 段焰辉, 蔡晋生. 基于本征正交分解的速度场快速预测方法研究[J]. 航空工程进展, 2014, 5(3): 350-357. |
Luo J, Duan Y H, Cai J S. A quick method of flow field prediction based on proper orthogonal decomposition[J]. Advances in Aeronautical Science and Engineering, 2014, 5(3): 350-357. | |
22 | 周晅毅, 李刚. POD结合薄板样条插值法在风压预测中的应用[J]. 建筑结构,2011, 41(6): 98-109. |
Zhou X Y, Li G. Application of POD combined with thin-plate splines in research on wind pressure[J].Building Structure, 2011, 41(6): 98-109. | |
23 | 江棹荣, 倪振华, 谢壮宁. 本征正交分解技术在屋盖风压场重建与预测中的应用[J]. 应用力学学报, 2007, 24(4): 592-598. |
Jiang Z R, Ni Z H, Xie Z N. Reconstruction and prediction of wind pressure field on roof[J]. Chinese Journal of Applied Mechanics, 2007, 24(4): 592-598. | |
24 | 王友武. 广州塔高空风场特性与风压预测[D]. 长沙: 湖南大学, 2012. |
Wang Y W. Wind characteristics of Guangzhou tower at high altitude and prediction of wind pressures[D]. Changsha: Hunan University, 2012. | |
25 | 王敦华. 超高层建筑风压场的重构与预测[D]. 北京: 北京交通大学, 2009. |
Wang D H. Reconstruction and prediction of wind pressure field for high-rise building[D]. Beijing: Beijing Jiaotong University, 2009. | |
26 | 丁鹏, 陶文铨. 管翅式换热器流动和换热的低阶模型模拟[J]. 中国石油大学学报(自然科学版), 2011, 35(2): 137-140. |
Ding P, Tao W Q. Reduced order modeling of fluid flow and heat transfer in tube-fin heat exchanger[J]. Journal of China University of Petroleum (Edition of Natural Science), 2011, 35(2): 137-140. | |
27 | 王烨, 王艺, 胡文婷, 等. POD方法在扁管管翅式换热器研究中的应用[J]. 计算物理, 2018, 35(5): 587-596. |
Wang Y, Wang Y, Hu W T, et al. Application of POD reduced-order model to the study of heat transfer performance of flat tube bank fin heat exchanger[J]. Chinese Journal of Computational Physics, 2018, 35(5): 587-596. | |
28 | 胡文婷. 基于POD方法的扁管板翅式换热器换热数值模拟[D]. 兰州: 兰州交通大学, 2017. |
Hu W T. Numerical simulation of flat tube fin heat exchanger based on POD method[D]. Lanzhou: Lanzhou Jiaotong University, 2017. | |
29 | 王烨, 王良璧. 翅片材料对扁管管翅式换热器耦合传热特性影响[J]. 应用基础与工程科学学报, 2017, 25(4): 824-834. |
Wang Y, Wang L B. Influence of fin material on the conjugate heat transfer characteristics of flat tube bank fin heat exchanger[J]. Journal of Basic Science and Engineering, 2017, 25(4): 824-834. | |
30 | 宇波. 流动与传热数值计算——若干问题的研究与探讨[M]. 北京: 科学出版社, 2015. |
Yu B. Numerical Calculation of Flow and Heat Transfer: Research and Discussion on Some Problems[M]. Beijing: Science Press, 2015. | |
31 | Kylikof U A. The Cooling System of Diesel Locomotive[M]. Moscow: Machine Construction Press, 1988. |
[1] | 叶展羽, 山訸, 徐震原. 用于太阳能蒸发的折纸式蒸发器性能仿真[J]. 化工学报, 2023, 74(S1): 132-140. |
[2] | 张双星, 刘舫辰, 张义飞, 杜文静. R-134a脉动热管相变蓄放热实验研究[J]. 化工学报, 2023, 74(S1): 165-171. |
[3] | 张龙, 宋孟杰, 邵苛苛, 张旋, 沈俊, 高润淼, 甄泽康, 江正勇. 管翅式换热器迎风侧翅片末端霜层生长模拟研究[J]. 化工学报, 2023, 74(S1): 179-182. |
[4] | 张义飞, 刘舫辰, 张双星, 杜文静. 超临界二氧化碳用印刷电路板式换热器性能分析[J]. 化工学报, 2023, 74(S1): 183-190. |
[5] | 陈爱强, 代艳奇, 刘悦, 刘斌, 吴翰铭. 基板温度对HFE7100液滴蒸发过程的影响研究[J]. 化工学报, 2023, 74(S1): 191-197. |
[6] | 刘明栖, 吴延鹏. 导光管直径和长度对传热影响的模拟分析[J]. 化工学报, 2023, 74(S1): 206-212. |
[7] | 王志国, 薛孟, 董芋双, 张田震, 秦晓凯, 韩强. 基于裂隙粗糙性表征方法的地热岩体热流耦合数值模拟与分析[J]. 化工学报, 2023, 74(S1): 223-234. |
[8] | 邹启宏, 李乾, 葛天舒. 基于多目标下的两级并联除湿热泵系统实验研究[J]. 化工学报, 2023, 74(S1): 265-271. |
[9] | 宋嘉豪, 王文. 斯特林发动机与高温热管耦合运行特性研究[J]. 化工学报, 2023, 74(S1): 287-294. |
[10] | 张思雨, 殷勇高, 贾鹏琦, 叶威. 双U型地埋管群跨季节蓄热特性研究[J]. 化工学报, 2023, 74(S1): 295-301. |
[11] | 晁京伟, 许嘉兴, 李廷贤. 基于无管束蒸发换热强化策略的吸附热池的供热性能研究[J]. 化工学报, 2023, 74(S1): 302-310. |
[12] | 程成, 段钟弟, 孙浩然, 胡海涛, 薛鸿祥. 表面微结构对析晶沉积特性影响的格子Boltzmann模拟[J]. 化工学报, 2023, 74(S1): 74-86. |
[13] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[14] | 王玉兵, 李杰, 詹宏波, 朱光亚, 张大林. R134a在菱形离散肋微小通道内的流动沸腾换热实验研究[J]. 化工学报, 2023, 74(9): 3797-3806. |
[15] | 齐聪, 丁子, 余杰, 汤茂清, 梁林. 基于选择吸收纳米薄膜的太阳能温差发电特性研究[J]. 化工学报, 2023, 74(9): 3921-3930. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||